

Occlusion-Aware Non-Rigid Point Cloud Registration via Unsupervised Neural Deformation Correntropy

Motivation

- Unsupervised methods without annotations are more generalizable
- > Ensure correct deformation in overlapping regions while maintaining plausible deformation in occluded areas—avoiding collapse or tearing

Method

- Maximum correntropy-based unsupervised implicit neural representations for occlusion-robust registration
- Locally linear reconstruction enforces natural deformations in regions lacking correspondences

Problem Formulation

> Correntropy

$$V(X,Y) = \mathbb{E}_{XY}[k(X,Y)] = \iint_{x,y} k(x,y)$$

Correntropy-induced similarity metric

$$\mathcal{M}(\boldsymbol{x}, \boldsymbol{y}) = (k_{\sigma}(0) - \frac{1}{n} \sum_{j=1}^{n} k_{\sigma}(x_j - y_j)$$

Mingyang Zhao¹, Gaofeng Meng^{1,2}, Dong-Ming Yan² 1 Hong Kong Institute of Science & Innovation, CAS 2 Institute of Automation, CAS

> Non-rigid registration under occlusion is a universal yet understudied problem > Locally linear reconstruction

$$\min_{\boldsymbol{w}_j} \mathcal{L}(\boldsymbol{w}_j) = \frac{1}{2} \|\boldsymbol{y}_j - \mathbf{Z}_j \boldsymbol{w}_j\|_2^2 = \frac{1}{2} \boldsymbol{w}_j^\top \mathbf{G}_j \boldsymbol{w}_j$$

s.t. $\boldsymbol{w}_j^\top \mathbf{1}_k = 1$

Locally linear reconstruction regularization

$$\mathcal{R}(\mathbf{\Theta}) = \sum_{j=1}^{N} \|\mathcal{T}_{\mathbf{\Theta}}(\boldsymbol{y}_{j}) - \mathcal{T}_{\mathbf{\Theta}}(\mathbf{Z}_{j})^{\top} \boldsymbol{w}_{j}\|_{2}$$

Unsupervised optimization

$$\Theta^* = \arg\min \mathcal{F}(\Theta) = \alpha_1 \mathcal{L}(\Theta) + \alpha_2 \mathcal{R}(\Theta)$$

$$\Theta$$

Results

> LLR vs. AIAP

 $y)p_{XY}(x,y)dxdy$

$$(j))^{\frac{1}{2}}$$

Liver occlusion dataset

Metric	Liver 1				Liver 2				Liver 3			
Method	EPE ↓	AccS↑	AccR↑	Outlier \downarrow	EPE ↓	AccS ↑	AccR↑	Outlier↓	EPE↓	AccS ↑	AccR↑	Outlier ↓
GBCPD (Hirose, 2022)	11.849	18.770	65.263	0.000	9.169	48.871	75.534	0.000	16.240	31.770	53.162	0.000
AMM_NRR (Yao et al., 2023)	28.505	21.549	36.683	1.353	19.188	36.997	47.030	0.000	18.744	35.593	49.289	0.000
NSFP (Li et al., 2021a)	49.655	18.057	39.494	27.218	32.520	45.011	53.659	9.514	28.789	37.742	50.696	14.167
NDP (Li & Harada, 2022b)	58.470	2.795	8.504	25.961	37.456	10.357	21.674	11.131	29.508	26.675	43.407	12.780
DPF (Prokudin et al., 2023)	35.090	9.065	21.797	1.225	25.180	20.158	46.976	0.000	23.045	26.507	43.491	5.041
OAR (Ours)	8.662	29.228	96.813	0.000	5.687	75.193	97.184	0.000	12.112	42.372	56.564	0.000

> Combination with point correspondence

Metric		4D	Match		4DLoMatch				
Method	$EPE \downarrow$	$AccS \uparrow$	AccR \uparrow	Outlier \downarrow	EPE↓	AccS ↑	AccR ↑	Outlier ↓	
Lepard (Li & Harada, 2022a)+SVD	0.137	6.91	24.50	43.43	0.160	5.27	19.77	44.16	
PointPWC (Wu et al., 2019)	0.182	6.25	21.49	52.07	0.279	1.69	8.15	55.70	
FLOT (Puy et al., 2020)	0.133	7.66	27.15	40.49	0.210	2.73	13.08	42.51	
GeomFmaps (Donati et al., 2020)	0.152	12.34	32.56	37.90	0.148	1.85	6.51	64.63	
SyNoRiM-pw (Huang et al., 2022)	0.099	22.91	49.86	26.01	0.170	10.55	30.17	31.12	
Lepard+NICP (Li & Harada, 2022a)	0.097	51.93	65.32	23.02	0.283	16.80	26.39	52.99	
Lepard+NDP (Li & Harada, 2022b)	0.077	61.30	74.12	17.37	0.177	26.59	41.05	33.81	
Lepard+OAR (Ours)	0.059	59.32	74.33	16.41	0.251	27.25	42.01	45.04	

> Application to mesh hole filling

Source

Robustness against outliers

Project Page: (paper & code)

Result 3

