

Motivation

- Registration without shape matching poses substantial challenges
- Unsupervised methods without annotations are more generalizable
- > Iterative update of point positions is similar to clustering centroids update during unsupervised clustering process

Method

- Formulate non-rigid point set registration as clustering analysis
- \succ Laplacian kernel function for robust displacement regularization
- > Approximation error bound of the Nystrom low-rank method
- > Dimension-independent, closed-form, robust to large deformations

The blue and gray models represent the source and target point clouds, respectively, while the yellow models are our registration results

problem formulation

 $\mathcal{T}(\mathbf{Y}) \triangleq \mathbf{Y} + \nu(\mathbf{Y})$

Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis

Mingyang Zhao¹, Jingen Jiang², Lei Ma³, Shiqing Xin², Gaofeng Meng^{1,4}, Dong-Ming Yan⁴ 1 Hong Kong Institute of Science & Innovation, CAS 2 Shandong University 3 Peking University 4 Institute of Automation, CAS

Cube2Sphere

fuzzy clustering analysis

$$\min F(\mathbf{U}, \boldsymbol{\alpha}, \boldsymbol{\Sigma}, \nu) = \sum_{j=1}^{C} \sum_{i=1}^{M} u_{ij} || \boldsymbol{\Sigma}_{j}^{-\frac{1}{2}} (\boldsymbol{x}_{i} - (\boldsymbol{y}_{j} + \nu(\boldsymbol{y}_{j}))) ||_{2}^{2}$$

$$+u_{ij}\log|\mathbf{\Sigma}_j| + \lambda u_{ij}\log\frac{u_{ij}}{\alpha_j},$$
$$\sum_{j=1}^C u_{ij} = 1, \sum_{j=1}^C \alpha_j = 1, u_{ij}, \alpha_j \in [0, 1]$$

$$+u_{ij}\log|\mathbf{\Sigma}_j| + \lambda u_{ij}\log\frac{u_{ij}}{\alpha_j},$$
$$s.t. |\mathbf{\Sigma}_j| = \theta_j, \sum_{j=1}^C u_{ij} = 1, \sum_{j=1}^C \alpha_j = 1, u_{ij}, \alpha_j \in [0, 1]$$

deformation regularization

 $\min F(\mathbf{U}, \boldsymbol{\alpha}, \boldsymbol{\Sigma}, \nu) + \zeta \mathcal{R}(\mathbf{U}, \boldsymbol{\omega}, \boldsymbol{\omega},$

improved Nystrom approximation

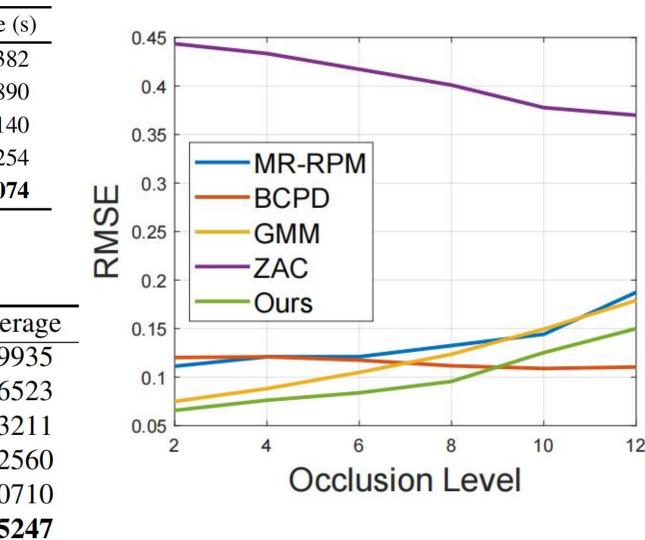
 $\epsilon \le 4\sqrt{2}T^{3/2}\gamma\sqrt{C'q} +$

closed-form solution

$$\mathbf{U} = (\operatorname{diag}(\mathbf{A}\mathbf{1}_{C}))^{-1}\mathbf{A} \quad \boldsymbol{\alpha} = \frac{1}{M}\mathbf{U}^{T}\mathbf{1}_{M}$$
$$\sigma^{2} = \frac{\operatorname{tr}(\mathbf{X}^{T}\operatorname{diag}(\mathbf{U}^{T}\mathbf{1}_{M})\mathbf{X} - (2(\mathbf{U}\mathbf{X})^{T} + \mathbf{T}^{T}\operatorname{diag}(\mathbf{U}\mathbf{1}_{C}))\mathbf{T})}{n \times M}$$
$$\mathbf{c} = (\mathbf{L} + \zeta\sigma^{2}\operatorname{diag}(\mathbf{U}\mathbf{1}_{C})^{-1})^{-1}(\operatorname{diag}(\mathbf{U}\mathbf{1}_{C})^{-1}\mathbf{U}\mathbf{X} - \mathbf{Y})$$

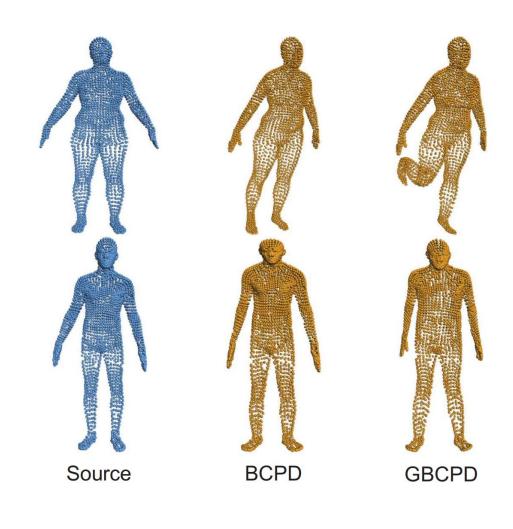
Result

2D hand pose registration

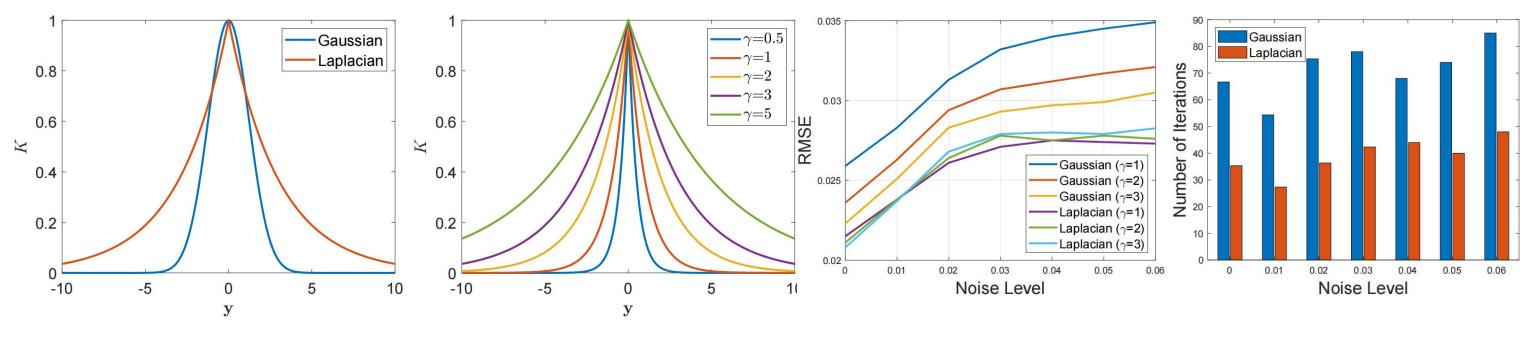

Method	Subject 1	Subject 2	Subject 3	Subject 4	Time (
MR-RPM [30]	0.0940	0.0834	0.1028	0.1388	0.238	
BCPD [20]	0.1027	0.1055	0.1080	0.1579	0.689	
GMM [23]	0.0571	0.0547	0.0734	0.0917	0.114	
ZAC [45]	0.4886	0.4566	0.4879	0.4935	0.425	
Ours	0.0383	0.0481	0.0537	0.0879	0.107	

3D TOSCA dataset

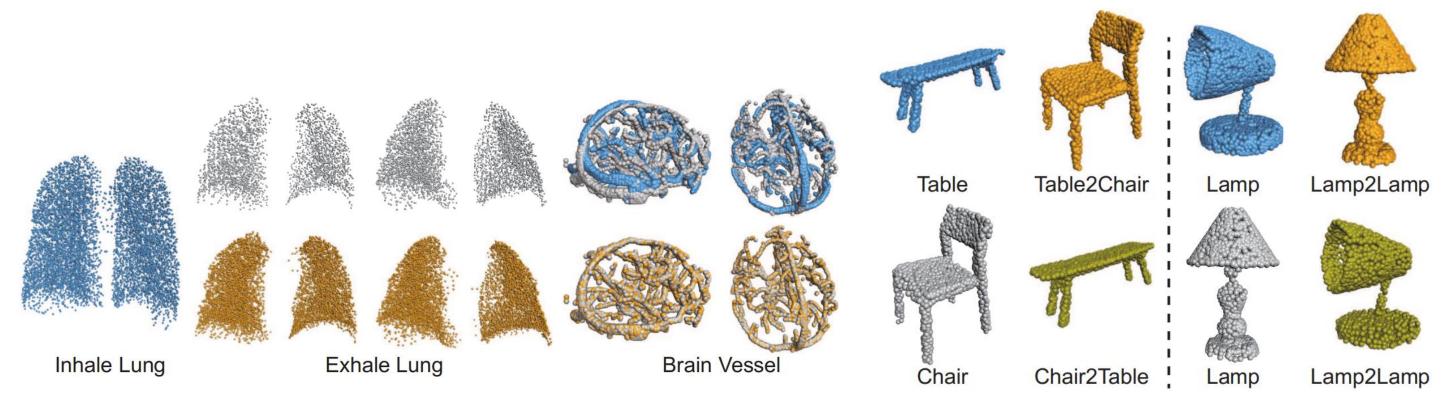
Method	Cat	Centaur	Dog	Gorilla	Aver
BCPD [20]	3.9884	8.1017	7.2800	5.6253	5.99
GBCPD [21]	1.5631	2.9480	1.5300	3.5751	2.65
Nerfies [35]	3.2704	2.8826	1.3612	2.2809	2.32
NDP [26]	4.3639	3.4373	3.1285	2.8312	3.25
NSFP [24]	1.8774	2.6425	1.6734	2.2044	2.07
Ours	1.3496	1.8125	1.2088	1.6807	1.52


$$(\nu) \ \mathcal{R}(\nu) = \int_{\mathbf{R}^n} d\mathbf{s} \frac{||\tilde{\nu}(\mathbf{s})||_2^2}{\tilde{K}(\mathbf{s})}$$

$$-2C'\gamma^2 Tq \|W^{-1}\|_F$$



3D FAUST point cloud registration


Settings	Intra-1	Intra-2	Intra-3	Intra-4	Intra-5	Intra-6	Inter-1	Inter-2	Inter-3	Inter-4	Average	Time (s)
BCPD [20]	0.0913	0.1011	0.0872	0.0577	0.1004	0.0746	0.1196	0.0705	0.0935	0.0923	0.0888	3.0359
GBCPD [21]	0.0285	0.0212	0.0211	0.0260	0.0244	0.0339	0.0359	0.0340	0.0212	0.0190	0.0265	1.9346
Fast_RNRR [47]	0.0430	0.0487	0.0397	0.0504	0.0429	0.0391	0.1358	0.0743	0.0477	0.0358	0.0557	0.6324
AMM_NRR [48]	0.0544	0.0486	0.0400	0.0539	0.0405	0.0393	0.0838	0.0686	0.0422	0.0399	0.0511	2.0438
Sinkhorn [16]	0.0654	0.0638	0.1372	0.1096	0.0749	0.0821	0.2467	0.0781	0.1400	0.1720	0.1170	2.0377
Nerfies [35]	0.0120	0.0107	0.0138	0.0129	0.0135	0.0118	0.0121	0.0144	0.0140	0.0140	0.0129	9.4287
NDP [26]	0.0183	0.0199	0.0192	0.0152	0.0170	0.0149	0.0181	0.0198	0.0164	0.0155	0.0174	1.7590
NSFP [24]	0.0126	0.0134	0.0132	0.0118	0.0137	0.0142	0.0167	0.0162	0.0148	0.0166	0.0143	2.4607
Ours	0.0086	0.0089	0.0103	0.0096	0.0089	0.0081	0.0097	0.0099	0.0094	0.0081	0.0092	2.3746

Ablation study \bullet

Applications

Project Page: (paper & code)

