

Interactive Reverse Engineering of CAD Models

Zhenyu Zhang, Mingyang Zhao, Zeyu Shen, Yuqing Wang, Xiaohong Jia, Dong-Ming Yan

Background - Product Design and Development

Manufacturing and Production

- Improving Existing Products: Reverse modeling existing products to improve design and functionality
- Custom Parts: Manufacturing custom parts based on models of existing components

[Det et al. 2018]

Background - Quality Control and Inspection

Structural Analysis

• Spare Parts Manufacturing

[Roseline et al. 2013]

• Error Detection

• Repair and Retrofit

Solutions – B-rep, CSG, and Feature Modeling

B-rep

Problem: Represent a CAD model with multiple primitives

Solution: Extract the Boundary Representation of a CAD model

CSG

Problem:

- Analyze the original geometric composition of standard components
- Provide a method for precise representation and structure modeling

Cons:

Difficult to represent complex or organic shapes Represent irregular or free-form shapes is challenging

Feature Modeling

Problem: Reproduce the steps of forward modeling of CAD models to reconstruct the model

Solution: Create sketches on standard surfaces, which are then used to manipulate and construct the model

Cons:

- Interactive operations are complex, high learning costs
- Modeling is time consuming

We restore the forward modeling process from CAD models and alleviate interaction

REIATED WORK

Related Work

InverseCSG

Boundary Representation

ComplexGen [Guo et al. 2022]

[Du et al. 2018]

Reverse engineering from 3D meshes to CAD models [Roseline et al. 2013]

UCSG-NET [Kania et al. 2020]

Related Work

• Feature Modeling

(a) Implicit Field

(b) Sample Points with Occupancy

(c) Fitted Sketch Splines

control points

splines at hierarchy 0

splines at hierarchy 1

SECAD-Net [Li et al. 2023]

Autodesk Fusion 360 [Verma G. book. 2018]

Extrudenet

[Ren et al. 2022]

METHOD

Method - Overview

Method - Plane Cutting

Cutting Plane

- Select a set of patches with on each model
- Optimize and re-pick the patches until the BFS algorithm converges

Loop Structure

- Split the cutting line as two types of primitives, line and arc, according to its curvature feature
- Adopt the Ramer-Douglas-Peucker (RDP) algorithm to approximate the cutting line by a set of line segments
- Fit the primitive edges by judging the endpoints of the primitives based on a predetermined threshold

Method - Structure Reconstruction

Extruding Structure

 Project the sampled points on the cut line from 3D to 2D

- We perform Delaunay triangulations on the 2D point set
- We fill the interior of the triangles, getting a binary mask
- We use the IoU similarity between the two masks to determine the rough extrusion position
- We employ a five-step bisection search to find the exact position of the cutting

Method - Structure Reconstruction

profile

Sweeping Structure

 Given a sweeping path and a profile curve, a translational form of the sweeping surface can be represented by

$$S(u, v) = T(v) + C(u)$$
• Control points: $T(v) = \frac{\sum_{j=0}^{m} N_{j,q}(v)w_j^T T_j}{\sum_{j=0}^{m} N_{j,q}(v)w_j^T}$
Sweeping surface:
$$S(u, v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u)N_{j,q}(v)w_{i,j}P_{i,j}}{\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u)N_{j,q}(v)}$$
• Control points: $C(u) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{n} N_{i,p}(u)w_i^C C_i}{\sum_{i=0}^{n} \sum_{j=0}^{n} N_{i,p}(u)w_i^C}$
Control points: $P_{i,j} = C_i + T_j$
Weights: $w_{i,j} = w_i^C w_j^T$

path

Method - Structure Reconstruction

Revolving Structure

- We create the rotation axis using the center of the path and the normal of the cutting plane
- We rotate the profile 360° around the axis (using nine points representing the circle)

Revolving surface:
$$S(u, u)$$

$$\psi) = \sum_{i=0}^{\infty} \sum_{j=0}^{m} R_{i,2;j,q}(u,v) P_{i,j}$$

8 m

Control points: $P_{i,j} = P_{0,j} = P_j$

Weights: $w_{0,j} = w_j, w_{1,j} = (\sqrt{2}/2)w_j, w_{2,j} = w_j, w_{3,j} = \sqrt{2}/2w_j, ..., w_{8,j} = w_j$

Method - Boolean Operations

Lofting Structure

Boolean Operations

- We select appropriate Boolean operations to merge these blocks together
- These Boolean operations include *union*, ٠ *intersection,* and *difference*

15

RESULTS

Results - Our Method

1%

Results - Robustness Test

Noise interference

 $\sigma = 0.03(2.46m)$ RMS = 0.12%

RMS = 0.63%

Occlusion interference

RMS = 0.64%

RMS= 0.75%

Results- Comparison Test

Results- Highly Complex Models

Results - Model Editing

21

- We present an interaction-simplified pipeline to reproduce the forward modeling process of CAD models, which effectively transforms input mesh models into editable CAD models
- Our method addresses the challenges associated with traditional software by automating the process of fitting primitive loops and detecting extrusion height
- Our method offers the advantage of allowing direct editing of the model

- When the circular segment has exceptionally large radius, the primitive loop fitting algorithm may mistakenly identify it as a straight line

model

• We currently cut the model using planes, making it difficult to fit complex spatial curves, such as the gear

23

THANK YOU FOR YOUR ATTENTION!

Co-organizers:

