

Accurate Registration of Cross-Modality Geometry via Consistent Clustering

Mingyang Zhao¹ Joint work with Xiaoshui Huang², Jingen Jiang³, Luntian Mou⁴, Lei Ma⁵, and Dong-Ming Yan⁶

autonomous driving

Highway

[Lu et al. 2019]

dynamic reconstruction

[Yao et al. 2024]

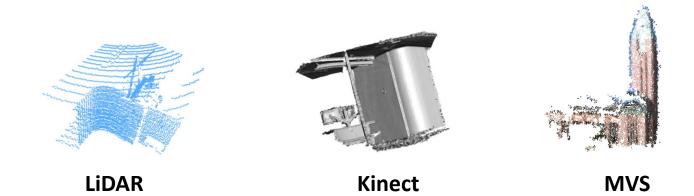
robotics

[Pomerleau et al. 2015]

shape completion

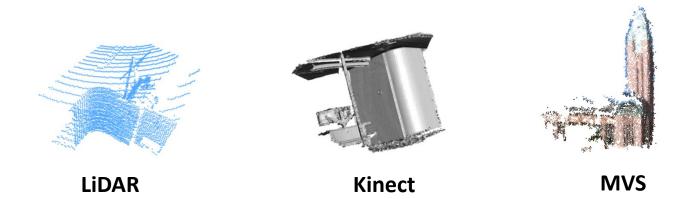
[Halimi et al. 2020]

- 1. Cross-modality data having different representations, e.g., densities, textures, ...
- 2. Develop a holistic framework to deal with cross-modality registration
- 3. Consider three common modalities including LiDAR, Kinect, and MVS



Observations: different representations BUT similar geometric structures

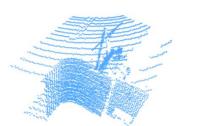
How to define geometric structures?

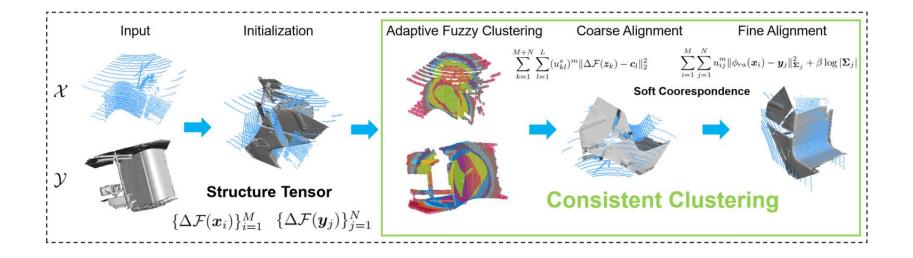


Observations: different representations BUT similar geometric structures

How to define geometric structures?

Clustering





Formulate cross-modality registration as an unsupervised clustering problem

Fuzzy clustering to discover similar structures

$$\min_{\mathbf{U}_{\mathbf{s}},\mathcal{C}} J(\mathbf{U}_{\mathbf{s}},\mathcal{C}) = \sum_{k=1}^{M+N} \sum_{l=1}^{L} (u_{kl}^s)^m \|\Delta \mathcal{F}(\boldsymbol{z}_k) - \boldsymbol{c}_l\|_2^2$$

Clustering centroids

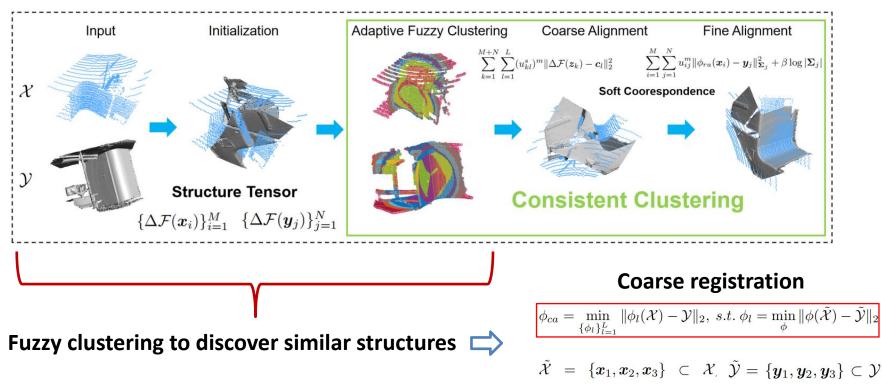
$$c_{l} = \frac{\sum_{k=1}^{M+N} u_{kl}^{m} \Delta \mathcal{F}(\boldsymbol{z}_{k})}{\sum_{k=1}^{M+N} u_{kl}^{m}}, u_{kl}^{s} = \frac{\left(\frac{1}{\|\Delta \mathcal{F}(\boldsymbol{z}_{k}) - \boldsymbol{c}_{l}\|_{2}^{2}}\right)^{\frac{1}{m-1}}}{\sum_{l'=1}^{L} \left(\frac{1}{\|\Delta \mathcal{F}(\boldsymbol{z}_{k}) - \boldsymbol{c}_{l'}\|_{2}^{2}}\right)^{\frac{1}{m-1}}}$$

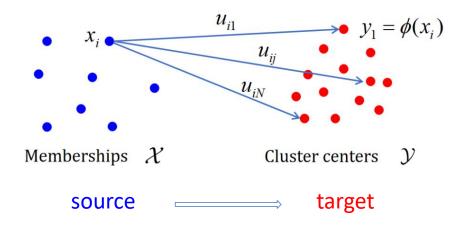
Fuzzy degree member

Moment difference

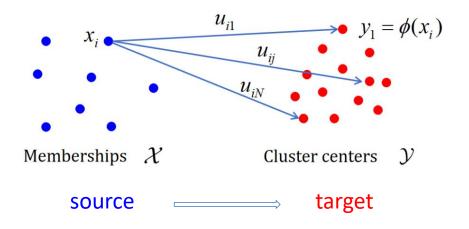
$$\Delta \mathcal{F}(oldsymbol{x}) \;=\; (\Delta \mathcal{F}_1(oldsymbol{x}), \Delta \mathcal{F}_2(oldsymbol{x}), \cdots, \Delta \mathcal{F}_{n-1}(oldsymbol{x})) \in \; \mathbb{R}^{n-1}$$

Multi-scale moment $\mathcal{F}_{r_i}(\boldsymbol{x}) = (I_{r_i1}, I_{r_i2}, I_{r_i3}) \quad I_1 = \frac{\lambda_3}{\lambda_1}, \quad I_2 = \sqrt{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}, \quad I_3 = -\sum_{i=1}^3 \lambda_i \ln \lambda_i$





Formulate fine point-wise alignment still as an unsupervised clustering process



$$\min_{\phi_{ra},\sigma^2} J(\phi_{ra},\sigma^2) = \sum_{i=1}^M \sum_{j=1}^N u_{ij}^m \|\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j\|_{\boldsymbol{\Sigma}_j}^2 + \beta \log |\boldsymbol{\Sigma}_j|$$

Objective function

$$\min_{\phi_{ra},\sigma^2} J(\phi_{ra},\sigma^2) = \sum_{i=1}^M \sum_{j=1}^N u_{ij}^m \|\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j\|_{\boldsymbol{\Sigma}_j}^2 + \beta \log |\boldsymbol{\Sigma}_j|$$

$$\phi_{ra}(\boldsymbol{x}_i) = \mathbf{R}\boldsymbol{x}_i + \mathbf{t}$$

$$\|\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j\|_{\boldsymbol{\Sigma}_j}^2 = (\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j)^T \boldsymbol{\Sigma}_j^{-1} (\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j)$$

Fuzzy degree member

$$u_{ij}^{d} = \frac{\left(\frac{1}{\|\phi_{ra}(\boldsymbol{x}_{i}) - \boldsymbol{y}_{j}\|_{\boldsymbol{\Sigma}_{j}}^{2}}\right)^{\frac{1}{m-1}}}{\sum_{k=1}^{N} \left(\frac{1}{\|\phi_{ra}(\boldsymbol{x}_{i}) - \boldsymbol{y}_{k}\|_{\boldsymbol{\Sigma}_{k}}^{2}}\right)^{\frac{1}{m-1}}} = \frac{1}{\sum_{k=1}^{N} \left(\frac{\|\phi_{ra}(\boldsymbol{x}_{i}) - \boldsymbol{y}_{j}\|_{\boldsymbol{\Sigma}_{j}}}{\|\phi_{ra}(\boldsymbol{x}_{i}) - \boldsymbol{y}_{k}\|_{\boldsymbol{\Sigma}_{k}}}\right)^{\frac{2}{m-1}}}$$

Objective function

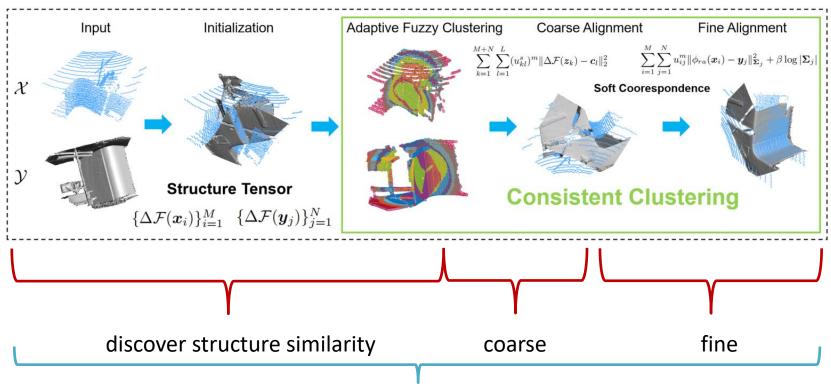
$$\min_{\phi_{ra},\sigma^2} J(\phi_{ra},\sigma^2) = \sum_{i=1}^M \sum_{j=1}^N u_{ij}^m \|\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j\|_{\boldsymbol{\Sigma}_j}^2 + \beta \log |\boldsymbol{\Sigma}_j|$$

Theorem 2. *The upper bound of the fuzzy registration residual* (Eq. 4) *is minimized by the following equations:*

$$\hat{\mathbf{R}} = \mathbf{\Phi}\mathbf{d}(1, \cdots, 1, |\mathbf{\Phi}\mathbf{\Psi}^{T}|)\mathbf{\Psi}^{T}, \quad \hat{\mathbf{t}} = \bar{\mathbf{y}} - \hat{\mathbf{R}}\bar{\mathbf{x}}, \\ \hat{\sigma}^{2} = \frac{1}{3S} \operatorname{tr}(\bar{\mathbf{X}}\mathbf{d}(\mathbf{U}\mathbf{1})\bar{\mathbf{X}}^{T} - 2\mathbf{\Phi}\mathbf{\Lambda}\mathbf{\Psi}\hat{\mathbf{R}}^{T} + \bar{\mathbf{Y}}\mathbf{d}(\mathbf{U}^{T}\mathbf{1})\bar{\mathbf{Y}}^{T}), \\ \text{where } \mathbf{X} = [\mathbf{x}_{1}, \cdots, \mathbf{x}_{m}] \in \mathbb{R}^{3 \times M}, \mathbf{Y} = [\mathbf{y}_{1}, \cdots, \mathbf{y}_{n}] \in \mathbb{R}^{3 \times N}, \\ S = \sum_{i,j=1}^{M,N} u_{ij}, \bar{\mathbf{x}} = \frac{1}{S}\mathbf{X}\mathbf{U}\mathbf{1}, \ \bar{\mathbf{y}} = \frac{1}{S}\mathbf{Y}\mathbf{U}^{T}\mathbf{1}, \ \mathbf{\Phi}\mathbf{\Lambda}\mathbf{\Psi}^{T} = \\ svd((\mathbf{Y} - \bar{\mathbf{y}}\mathbf{1})\mathbf{U}^{T}(\mathbf{X} - \bar{\mathbf{x}}\mathbf{1})^{T}) = svd(\bar{\mathbf{Y}}\mathbf{U}^{T}\bar{\mathbf{X}}^{T}), \ \mathbf{1} \text{ is the corresponding full one column vector.}$$

Analytical closed-form solution (all unknowns)

Fast alternative optimization (coordinate descent)



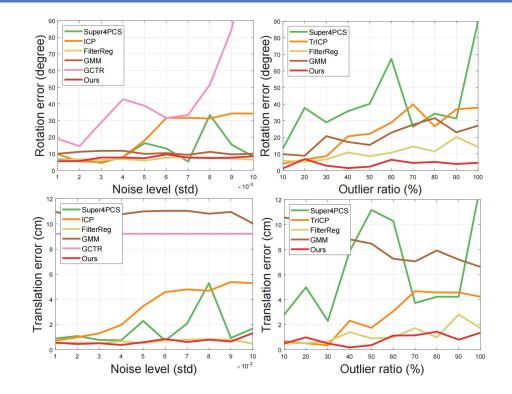
Formulate cross-modality registration as an unsupervised clustering problem ¹³

Lemma 1. Let $I = \{1, \dots, z\} \subseteq Z^+$ is an index set, $a_{i \in I} \in \mathbb{R}^+$ and $p \in (0, +\infty)$, then

$$z^{-\frac{1}{p}} \min_{i \in I} a_i \le (\sum_{i=1}^{z} a_i^{-p})^{-\frac{1}{p}} \le \min_{i \in I} a_i.$$

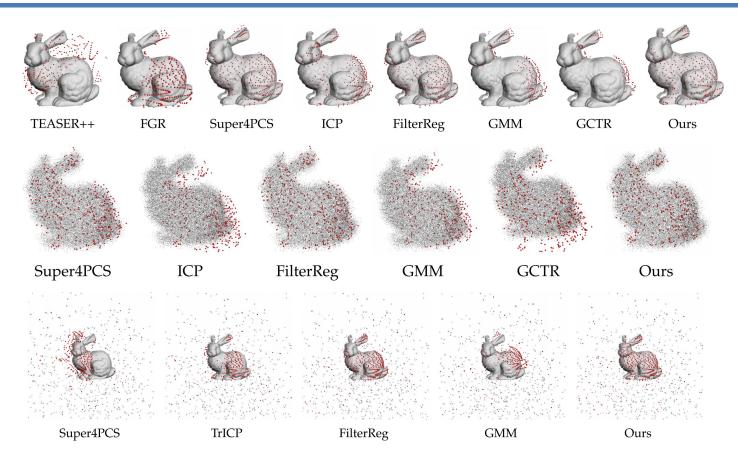
Theorem 1. The iterative closest point (ICP) algorithm is a special case of the proposed fuzzy registration method when the fuzzier $m \in (1, +\infty)$ converges to 1 and $\Sigma = I$.

RESULTS - SYNTHETIC TEST



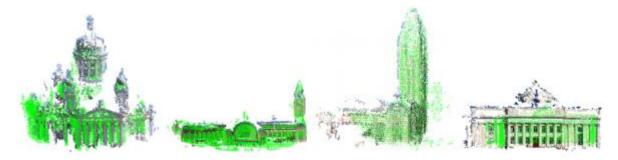
noise & outlier test

RESULTS - SYNTHETIC TEST



Real-world Helsinki outdoor dataset [Peng et al. 2014]

Dataset	Metric	Super4PC [22]	TrICP [17]	FilterReg [29]	GMM [26]	GCTR [9]	Ours
Library	RE	165.1815	84.7910	60.2347	4.8023	163.2037	3.2664
	TE	0.4297	0.1828	0.2316	0.2039	0.4136	0.1063
Cathedral	RE	79.9109	11.6182	2.3517	11.8433	121.6016	6.0415
	TE	1.0391	0.2972	0.1154	1.4506	1.0503	0.2782
East Station	RE	85.4812	15.2125	1.4468	2.5072	77.6636	0.9823
	TE	1.7305	0.1519	0.0409	0.3290	0.2513	0.0341
South Station	RE	147.1696	1.9297	0.9860	4.9186	106.8087	0.8726
	TE	0.0921	0.0015	0.0347	0.0563	0.0489	0.0456

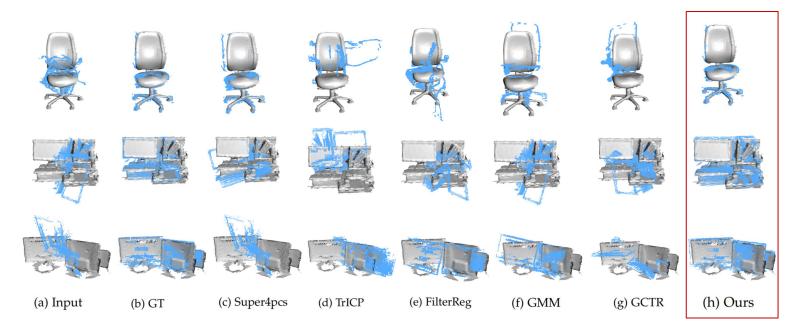


Align real-world LiDAR data to MVS data

Real-world 3DCSR indoor dataset [Huang et al. 2019]

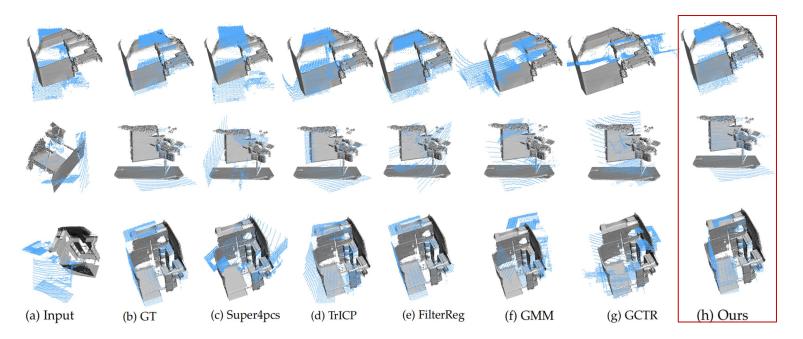
Method	Recall ↑	TE↓	RE↓	Time (s)↓	
DGR [39]	36.60	0.04	4.26	0.87	
FMR [58]	17.80	0.10	4.66	0.28	
PointNetLK [37]	0.05	0.09	12.54	2.25	
FGR [19]	1.49	0.07	10.74	2.23	
ESF-64+ICP [43]	24.30	0.04	5.71	0.19	
JRMPC [59]	0.00	-	-	18.10	
RANSAC [10]	3.47	0.13	8.30	0.03	
GCTR [9]	0.50	0.17	7.46	15.80	
Super4PCS [23]	6.93	0.24	6.38	1.70	
TrICP [18]	7.92	0.18	6.40	1.26	
FilterReg [32]	30.96	0.10	2.45	7.06	
GMM [29]	9.41	0.18	7.92	13.34	
CICP [45]	2.48	0.28	8.28	0.61	
PICP [26]	4.45	0.29	10.85	12.58	
Ours	40.59	0.06	2.21	4.47	

RESULTS - LIDAR & KINECT



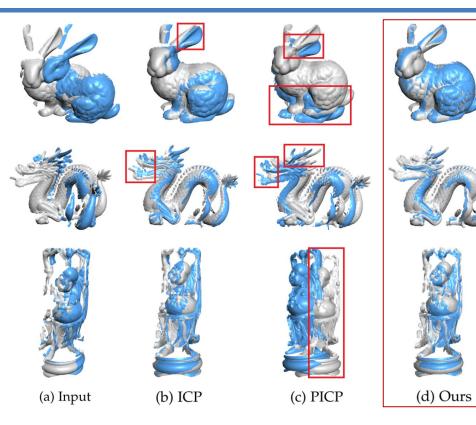
Real-world 3DCSR indoor dataset [Huang et al. 2019]

RESULTS - LIDAR & KINECT



Real-world 3DCSR indoor dataset [Huang et al. 2019]

RESULTS - SAME MODALITY

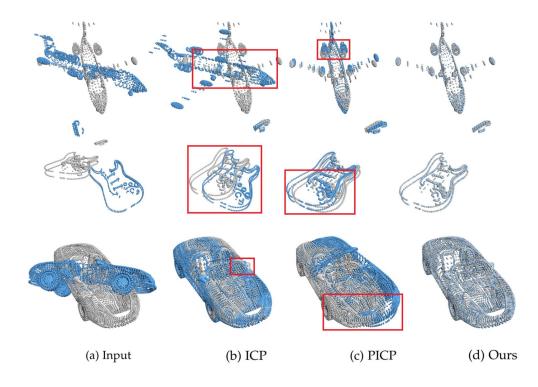


Dataset	Bunny		Dragon		Happy Buddaha	
Method	RE↓	TE↓	RE↓	TE↓	RE↓	TE↓
ICP [13]	4.2717	0.0022	4.6766	0.0060	5.0297	0.0016
PICP [26]	21.5870	0.1286	17.7415	0.0184	25.7583	0.0154
Ours	1.2439	0.0013	1.3350	0.0104	0.4647	0.0020

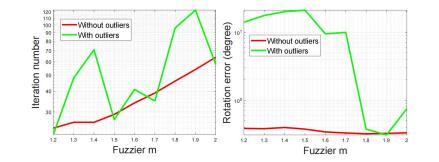
Dataset	Dataset Airplane		Guitar		Car	
Method	RE↓	TE↓	RE↓	TE↓	RE↓	TE↓
ICP [13]	54.3791	0.5157	19.2938	0.1412	5.5450	0.0762
PICP [26]	10.8500	0.0844	5.2585	0.0429	193.3783	0.2240
Ours	1.0001e-6	1.5128e-7	2.3286e-6	9.5704e-6	2.3454e-6	8.9725e-8

The Stanford 3D scanning repository

RESULTS - SAME MODALITY



$$\min_{\phi_{ra},\sigma^2} J(\phi_{ra},\sigma^2) = \sum_{i=1}^M \sum_{j=1}^N u_{ij}^m \|\phi_{ra}(\boldsymbol{x}_i) - \boldsymbol{y}_j\|_{\boldsymbol{\Sigma}_j}^2 + \beta \log |\boldsymbol{\Sigma}_j|$$



1. As m increases, iterations increase, rotation error decreases

2. Recommend $\,m\in [1.8,2]$ in use

- Boost the efficiency with parallel optimization
- Compile more cross source data
- Extend to non-rigid scenarios using unsupervised clustering

- Take structure similarity handling cross-modality registration
- Formulate cross-modality registration (coarse&fine) as a clustering process
- Demonstrate impressive performance on common data modalities

THANK YOU FOR YOUR ATTENTION!