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Abstract

Ellipsoid fitting is of general interest in machine vision, such as object detection
and shape approximation. Most existing approaches rely on the least-squares fitting of
quadrics, minimizing the algebraic or geometric distances, with additional constraints to
enforce the quadric as an ellipsoid. However, they are susceptible to outliers and non-
ellipsoid or biased results when the axis ratio exceeds certain thresholds.

To address these problems, we propose a novel and robust method for ellipsoid fitting
in a noisy, outlier-contaminated 3D environment. We explicitly model the ellipsoid by
kernel density estimation (KDE) of the input data. The ellipsoid fitting is cast as a max-
imum likelihood estimation (MLE) problem without extra constraints, where a weight-
ing term is added to depress outliers, and then effectively solved via the Expectation-
Maximization (EM) framework. Furthermore, we introduce the vector € technique to
accelerate the convergence of the original EM. The proposed method is compared with
representative state-of-the-art approaches by extensive experiments, and results show
that our method is ellipsoid-specific, parameter free, and more robust against noise, out-
liers, and the large axis ratio. Our implementation is available at https://zikail.
github.io/.

1 Introduction

Detecting and fitting quadratic surfaces or quadrics from 3D scattered points, such as planes,
cylinders, and ellipsoids is a fundamental problem in machine vision [2, 3, 7, 9, 11, 15, 26].
Among quadrics, ellipsoids attract more interest because they are the uniquely bounded and
centric surface, which provides a good characterization or approximation for the center and

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Allaire, Jacq, Burdin, Roux, and Couture} 2007

Citation
Citation
{Beale, Yang, Campbell, Cosker, and Hall} 2016

Citation
Citation
{Bischoff and Kobbelt} 2002

Citation
Citation
{Blane, Lei, Civi, and Cooper} 2000

Citation
Citation
{Faber and Fisher} 2001

Citation
Citation
{Georgiev, Al-Hami, and Lakaemper} 2016

Citation
Citation
{Miller} 1988

https://zikai1.github.io/
https://zikai1.github.io/

2 ZHAO ET AL.: ROBUST ELLIPSOID-SPECIFIC FITTING VIA EXPECTATION MAXIMIZATION

(a) Outlier-contaminated fitting (b) 3D medical data

Figure 1: Our method shows (a) highly accurate fitting in the contamination of heavy outliers
(‘+’) (net ellipsoid is the ground truth), and (b) approximation for 3D medical femur images.

orientation of objects [23, 29, 36]. For instance, Rimon ef al. [31] use ellipsoid fitting to
approximate the robot shape and speed up the collision detection process. Jia et al. [20] take
ellipsoids as bounding box for continuous collision detection. Gietzelt et al. [16] reduce the
accelerometer calibration as a 3D ellipsoid fitting problem, by which the transformation and
correction matrix is identified. Most existing methods adopt the least-squares (LS) principle
for ellipsoid fitting, among which algebraic or geometric distances are minimized. These
methods attain satisfactory results for simple and low-noise data points but are susceptible
to outliers that are quite common and inevitable in practice [6, 38, 42]. Meanwhile, various
constraints have been investigated to force the fitted surface as an ellipsoid regardless of
the input data. However, they cannot guarantee the best fitting when the ratio between the
longest axis and the shortest one surpasses certain thresholds, such as two in [23] and [22],
thereby significantly limiting their applications.

To overcome the shortcomings above, we propose a novel ellipsoid fitting method that
dose not relying on LS, instead, by using a set of points sampled over a unit sphere and trans-
formed by the model parameters, which is highly robust against outliers, and is ellipsoid-
specific regardless of the axis ratio. Inspired by a study of the point set registration frame-
work in [28], we explicitly model the ellipsoid and represent it via Gaussian mixture models
(GMM), armed with an adaptive uniform distribution to depress outliers. Then ellipsoid
fitting is formulated as an MLE without extra constraints, which is effectively solved by
the expectation-maximization (EM) framework. Furthermore, we encapsulate all parameters
into a sequence and introduce the vector € algorithm [40] to accelerate the EM convergence.

Our method is robust enough against outliers up to 60% and is without handcraft tuning
of hyper-parameters. The performance of our method regarding the accuracy and robustness
is validated by measuring the offset and shape deviations on various numerical experiments.
We further demonstrate the promising applications of the proposed method on real-world
scanned point clouds, where occlusion and outliers exist. Furthermore, our method can be
directly generalized to fit other quadrics such as cylinders and cones, as long as a paramet-
ric representation is given. To summarize, the contributions of this work are threefold as
follows:

* A novel ellipsoid-specific fitting method with remarkable robustness against outliers,
noise and the axis ratio.

» The probabilistic method is applied for ellipsoid fitting. We explicitly model the el-
lipsoid based on the outlier analysis from the kernel density estimation and effectively
speed up the convergence of the EM framework.

¢ All parameters are updated automatically by the derivation of the analytical gradients
without user tuning.
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2 Related Work

Definition 1 A general quadric in 3D Euclidean space is defined by the zero set of a second
order polynomial:
Q(a,p) =a-p = Ax> + By’ + Cz> + 2Dxy + 2Exz 0
+2Fyz+2Gx+2Hy+2Iz+J =0,

where a = [x> y* 72 2xy 2xz 2yz 2x 2y 2z 1]T are built from the point x =

(x,9,2)T €R3, andp=[A B C D E F G H I J|T are the coefficients that
characterize the quadric.

Eq. 1 represents an ellipsoid if its quadratic invariants satisfy [17]
L >0, Lxl>0, )

where [;, =AB+AC+BC—D*—E?*—F% I, =A+B+C, and

A D E
L=|D B F|. 3)
F E C

Given a set of data points X = {x; € R3}f\’: | that are sampled from a potential ellipsoid possi-
bly with noise or outliers, our purpose is to fit an ellipsoid from the data. The most frequently
used methods are those based on the LS principle, which can be classified into algebraic and
geometric fittings.

Algebraic fitting. To find the optimal parameter p, algebraic fitting minimizes the deviation
of the polynomial in Eq. 1 (ie., the algebraic distance or equation error) [13] by

N

N
Y Q%(ai,p) =Y (p"a:)* =p" Qp, 4)
i=1

i=1

where a; = a(x;) is the vector corresponding to the i’ point x; = (x;,v;,z;)7, and Q =
):ﬁy:] aal € S!0is the scatter matrix. Ellipse-specific fitting in 2D is solved by Fitzgibbon et
al. [12], and a direct extension for 3D ellipsoid-specific case is presented in [23] under the
determinant (A — B—C)? —4(F? +G* 4+ H? 4+ BC) > 0. Nevertheless, it attains a best fit only
when the shortest axis of the ellipsoid is at least half of the longest one. Once this hypothesis
fails, a bisection search must be executed to provide an approximation. Thus it may deviate
from the ground truths. Recently, Kesdniemi et al. [22] elaborate previous approaches and
simultaneously consider three trace constraints D> — AB < 0, E?> —AC < 0, and F> — BC < 0,
to force the quadric to be an ellipsoid, but it only credibly fits ellipsoids with a prior that

their maximal axis ratio rg, < 4/ %, where d is the dimension. When d = 3 in our case,

the limit value r,, = 2, meaning that it may fail to fit an ellipsoid whose longest axis is more
than twice the shortest one. Therefore, similar to [23], the application scope of [22] is also
greatly confined. Furthermore, according to the Gauss-Markov theorem [33], LS fitting is
susceptible to outliers that are quite common in practice.

Several methods [10, 41] treat ellipsoid fitting as a semi-definite programming (SDP)
problem, where ellipsoid-specificity is formalized as the matrix semi-definiteness such that
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S,(A) = 0, where S, (-) is the operator that extracts the leading p x p principal submatrix of
A. Lin et al. [24] introduce alternating direction method of multipliers (ADMM) to speed
up SDP solving but still minimize the residual error ||al p||, in the LS sense, thereby their
method is sensitive to outlier-contaminated environment.

Geometric fitting. Alternatively, geometric fitting [ 1, 14] minimizes the orthogonal distance
from point x;,i = 1,--- , N, to the ellipsoid

dist(X, Q) = ZHX,—X,H2 Z , 5

where X; is the point on the ellipsoid closet to x;, and ||x — X;|| denotes the Euclidean dis-
tance between x and x;. Geometric fitting exhibits more sound physical interpretations and
higher accuracy than algebraic fitting, but it requires much more time for distance evaluation.
Calculating the exact Euclidean distance from a point to an ellipsoid requires solving a sixth-
order equation. We present a simple derivation on the exact computation in the supplemental
material. To circumvent this issue, Taubin [37] uses the second-order Taylor expansion to ap-
proximate the orthogonal distance, whereas Sampson [34] weights the algebraic distance by
the first-order differential. However, geometric fitting usually requires proper initialization
(from algebraic fitting), and it is also vulnerable to outliers because the objective function
(Eq. 5) is based on the LS principle. Later, iteratively re-weighted least-squares (IRLS) is
introduced to depress outliers, by which M-estimators (robust kernels), such as Tukey [32]
and Huber [19], are used to reduce the effect of large residuals. IRLS is more stable and
robust than ordinary least-squares in an outlier-contaminated environment.

3 Methodology

Analysis of the input data. For the given data points X = {x; € R3}%Y 1> suppose X ~ p(x),
ie., X satisfies the probability distribution p(x), then we use the KDE to model the point
density by p(x) = % V| K (x — x;), where Kj,(x — x;) is the kernel function, and h is the
kernel bandwidth. A universal kernel is Gaussian function, which gives rise to the following
Gaussian mixture model:

N X
p(x) = N Z (2ﬂh2)d/2 exp(— 2 ), (6)

where d denotes the dimension (d = 3 in our case). Despite that Gaussian kernel function is
broadly used, the choice of a globally suitable % is not easy [8]. To ease this problem, from
the theory in [35] we adopt the local region for density estimation.

The k-nearest neighbour of x;,i =1,--- N, is denoted as N(x;) = {N. (xi), N2 (x;), - Nk(x,-)}

Then the density at x; is calculated by p(x;) = 77 +1 YxeN(x)Uix} 27rh2)d/2 exp(— HX x,II ). We

leverage kd-tree [5] to reduce the computational complexity from O(N?) to O(N log N). Dif-
ferent from [35] utilizing the same local &, we associate location x; in the data space with ker-
nel bandwidth & by adaptively calculating the local covariance h = %erN(xi) (x—x;) T (x—
X,’).

After the density estimation of each point x; € X, we adopt the relative density-based
outlier score (RDOS) [35] to measure the extent of point x;, differing from its neighbourhood
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N(x;), according to the following ratio

ZXEN (x7) (X)
IN(xi)[p(xi)
Intuitively, a larger RDOS(x;) indicates that x; is outside a dense region. Thus it is more

likely to be an outlier; otherwise, x; can be deemed as non-outlier. We further use Lemma 1
to attain a quantitative analysis.

RDOS(x;) = 7)

Lemma 1 Let the points X = {x; € R }f’: | be sampled from a continuous density distribu-
tion and the kernel function K, (x) be non-negative everywhere and integrated to one. Then,
RDOS(x;) equals 1 with probability 1:

Jim P(RDOS(x;)=1)=1. (8)

Lemma | provides a lower bound for outlier recognition. When 0 < RDOS(x;) < I or
RDOS(x;) = 1, we say that x; is not an outlier, and x; is possibly an outlier only if RDOS(x;) >
1. The adaptive RDOS(x;) is introduced for the weight initialization of our method. Mean-
while it can also be used for ellipsoid modeling, as presented in the following.

Ellipsoid modeling. Suppose the given point set X = {x; € R3}¥ L, is fitted by an ellipsoid
e with the shape parameter 8 = (xo,o,20,4,b,¢,,3,7), Where (x0,¥0,20) is the ellipsoid
center, (a,b,c) are the three semi-axis lengths, and (¢, 3,7) are the Euler angles along the
x,y,and z axes. To attain the ellipsoid, we first create a unit sphere s containing points
Y = {yn € R}, defined as

Xm = Xc+c086;-siny;, y, =y.+cosf;-cosyj, zy =2z +sinb;, ©)]

where ¢; = (x¢,Yc,2¢) is the spherical center, 6 € [0, %), ¥ € [0,27). To generate spherical
points y,,;, the number of inliers can be counted as M = ¥y cx 1(RDOS(x;) < 1) (Lemma 1),
where 1 is the indicator function We relax the inlier constraint as M =}y x 1(RDOS(x;) <

2), then 6, = [}] and y; = \F]’ i,j=1,---,[v/M], where [] is a rounding function.

Then a linear transformation 7 transforms the sphere s to the real ellipsoid e by e =T (s) =
As +t, where A is the affine transformation matrix, and t is the translation vector. To
solve A and t, we formulate ellipsoid fitting as a likelihood estimation by first express-
ing the sphere model as a GMM with M components, p(z) = Y2, P(y,,)p(z|ym),z € R3,

—v. |2 . . C .
(27:512)1’ 75 €Xp(— |2 2?;’“ ) is the Gaussian distribution and P(y,,) represents

the probability selecting the component y,,. To depress outliers, we add an additional
uniform distribution p(z|yyy1) = % relative to the volume V of the bounding box of X:
p(z) = w% +(1—=w)XM_ P(y)p(2|ym), where w € [0, 1] is the weight to balance the two
distributions.

Given that the spherical points Y = {y,, € R3 }f,‘f:l are generated uniformly, we set equal
membership probability P(y,,) = i and isotropic covariance ¢ for all components

where p(zly) =

<
S

M

- 1

p(z)=— - Y (2me?) 42 exp(—? lz—ym|?). (10)
m=1

<

The likelihood function F(Q) =[TY., p(x;|Q) of the input data X = {x; € R3}¥ | is max-
imized based on the independent and identical distribution assumption, where Q = {A,t, 62, w}
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is the parameter set. In [28], the weight w is preset as a hyper-parameter and tuned by users.
However, we make no assumptions on the noise or outlier magnitude. We take w as a variable
and automatically update it to find the optimal value. Finally, maximizing F (Q) is equivalent
to minimizing the following negative log-posterior

1-w 1 Ix; — Ay +t))?>. w
E(QIX) = l_leogpx,\Q ;long:)1 m (Mcz)d/zexp( o2 )+3)- aD

4 EM Algorithm

We adopt the EM framework [27] for ellipsoid fitting. The basic idea behind is first guessing
an "old" parameter Q°? and then use the Bayesian theorem [21] to compute a posterior prob-
ability or responsibility of the mixture components, which is the expectation or E-step of the
algorithm. In the subsequent maximization or M-step, the "new" parameter Q is updated by
minimizing the expectation of the completed-data negative log-likelihood Q function (de-
tailed in the supplemental material). The update of EM is detailed as follows.

E-step: We compute the posterior probability regarding the uniform distribution and each
mixture component in GMM, respectively.

l—w ( HX,‘*A“Idymﬁ»t(’M)”z )

01d(yM+l|X17 ): % OM(lexu ): M (27[0'2)"/2 exp 202
wy +(L=w) iy g7 p(xilyi) wy +(L=w) iy g7 p(xilyi) a2
oldy, 4 qold
1 exp(= [Ixi— (AZOEkH 2 )
= -, k=AM y )2 = Zilxi—(AoHy 10ld) |2 o M
1+%%kazlexp( [Ixi—( 20_)2'k+ ) ) Y exp( [Ixi—( 20§k+ I )+(2ﬂ02)d/21fvw¥

M-step: We update all parameters in Q by minimizing Q(Q,Q°¢). We take partial deriva-
tives of O with respect to each parameter and equate them to zero. Solving %—? =0, we attain
t= NLP(XTPTl —AY"P1), where X = [x;,---,xy]” and Y = [y1,---,ym]”. P is the corre-
spondence probability matrix with elements p,, = p"ldA(ym [X,), and 1 is the unit column vec-
tor. Similarly, w = N,,% A= (X"PTY)(Y"diag(P1)Y)~!, and 6% = ﬁtr(XT(diag(Prl)X
—P"YAT)), where X = X — NLPOPX, Y=Y- NLPOPTY. O =117 is all ones matrix, and
diag(a) is the diagonal matrix formed by vector a.

Furthermore, we adopt an €-accelerated technique [40] in our method to speed up the
EM convergence. To this end, we formalize the total parameters in Q as a 1 x 14 vector
denoted by Q. Then, the update of the new sequence {Q(},~¢ is

OO0 — Q(11+1)+((Q(n+2)_Q(nJr]))fl _(Q(nJrl)_Q(n))fl)fl’ (13)

where the inverse of a vector x is defined as [x] ' = x/||x||>. The above steps are repeated
until

Q0D — o < 5, (14)

where § = 1078 is the default convergence accuracy.

Ellipsoid parameter. Once we attain the optimal affine matrix A (the rotation matrix and
the scales can be recovered from it) and the translation vector t by the e-accelerated EM
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—Em
— EM acceleration

e error (log, )
ermor (log, 0)

teration number

(a) 200 points (b) 500 points (c) 800 points (d) 1,000 points
Figure 2: Convergence comparison between the original EM (black line) and the acceler-
ated one (red line) under different point numbers. The acceleration effect becomes more
significant as the number of points or the required fitting accuracy increase.

algorithm, the spherical pointy,, € s,m=1,--- ,M, becomes X = Aym +t, where x € e on the
ellipsoid is no longer homogeneous. However, we lay more emphasis on the nine geometric
parameters of an ellipsoid (derived in the supplemental material), which are expressed as

a2 A A - R . —Q3 Qu Q32
Co=t+Acs, a=\/A, b=+, E=+/A3, (x:atan27, =atan2 ~—, 7= atan2—=, 1
a 1 2, C 3 ONEXONE B o’ Y Qs (15)

where A, A2, A3, and Q3«3 are the eigenvalues and the orthogonal matrix attained via eigen-
decomposition of B = AAT .

S Experiments

In this section, the performance of the proposed method is tested and compared with seven
representative approaches falling into three categories, ie., algebraic methods: DLS [23],
HES [22], MQF [6] and Koop [39]; geometric methods: GF [4] and Taubin [37]; and the
robust one: RIX [25] dedicated for outlier handling. Furthermore, we demonstrate the ap-
plications of the proposed method for 3D scanned point clouds, where outliers, noise, and
occlusion exist. For numerical stability [18], the input data X= {x, cR3 }f’: | is first normal-
ized. Weuse A =1,t = 0,w = HXRPOSG>2} g 52 — 1y ' 1%: — ¥ |? to initialize Q
in the EM algorithm. The weight in MQF is 0.3, as suggested by the authors. The maximal
step size of RIX is tuned from 50 to 100, whereas the minimal one is 0.001. The scale factor
of RIX is tuned from 1.5 to 6 as fixed values often lead to noticeable deviations. Similar
to [22, 25], the fitting accuracy is assessed through the offset error E and the shape error E,

smax(AilAI)

= —1
Smin (AilAt)

Ec=|le;—¢€l]a, Ea = , (16)

where ¢; and ¢, A; and A are the offsets and the affine matrices of the ground truth and the
fitted ellipsoids, respectively and spyax and smm represent the largest and the smallest singular
values of the residual transformation A~'A,, respectively. For each test, we perform 100
independent trials, and the average metric is reported.

Effect of the ¢ technique. First, we reveal the effect of e-accelerated EM for 200, 500, 800,
and 1,000 data points. The results are reported in Fig. 2, where some observations can be
drawn: (1) for the fixed point number, the acceleration effect is more significant as the re-
quired convergence accuracy increases; (2) conversely, for fixed accuracy, the acceleration
effect is also more significant as the point number increases. Therefore, the € technique can
effectively speed up the convergence of the ellipsoid fitting process, especially for points
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Table 1: Comparisons of different methods on noisy data, where bold font is the top fitter.
Method

Noise (%) Metric DLS[23] HES[22] MQF[6] Koop[39] Taubin[37] GF[4] RIX[25] Ours
3.89 1.31 0.67 1.03
0.63 0.14 0.15 0.14
4.83 1.90 1.17 1.33
0.71 0.21 0.23 0.20
5.87 2.14 1.66 1.58
0.86 0.29 0.29 0.25
6.86 3.23 2.20 2.01
0.94 0.53 0.33 0.32
8.81 4.21 2.68 2.16
1.18 0.94 0.38 0.40
o o
g . 4 § o o
N /»/_7/ ==

(a) DLS [23] (b) HES [22] (c) MQF [6] (d) Koop [39]

s 0 20 3 4 s e 510 220 % 4 0 &
Outlier percentage (%)

Offset error E,,

£ B o £3¢
o <
H
2

(e) Taubin [37] (f) GF [4] (2) RIX [25] (h) Ours

3 0 2 3
Axis ratio r_ Axis ratior

Figure 3: Left: Fitting results under 10% Gaussian noise and 1% outliers (net ellipsoid is the
ground truth); right: Our method exhibits higher robustness against outliers and axis ratio.

with a large magnitude under a high accuracy fitting requirement.

Effect of noise. Next, we add different Gaussian noise with zero mean and standard devi-
ation o € [5%,25%)] to 200 data points. The average offset and shape deviations E. and
E, are reported in Table 1. As observed, our fit attains the overall best performance and is
more robust when heavier noise is added. GF has minor deviations than the other LS-based
methods. However, when noise goes up, see o > 20%, a significant error exists, indicat-
ing its instability for severe noise. Koop attains the largest deviations among all methods,
while DLS and HES share quite similar performance. As a robust method, RIX achieves
the second-best performance, but with noise increasing, such as ¢ > 15%, it results in more
offset errors than ours. Ellipsoid fitting examples are presented in the left panel of Fig. 3.

(a) Input (b) Tukey [32] (c) Huber [19] (d) RIX [25] (e) Ours
Figure 4: Ellipsoid fitting examples in the presence of outliers ("+’). As outliers increase
from 60% (first row) to 80% (second row), the proposed method outperforms M-estimators
of Tukey and Huber, and RIX with higher robustness.

Effect of outliers. Subsequently, we contaminate the ground truth data by a series of outliers
from 5% to 60%, along with zero-mean Gaussian noise, and ¢ = 5%. Given that LS-based
methods are susceptible to outliers, we test the two robust methods and the iteratively re-
weighted least-squares that use two M-estimators (robust kernels), such as Tukey [32] and
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Figure 5: Influence of axis ratio r,, to different methods. Algebraic methods return signifi-

cant errors, revealing their instability for thin or flat ellipsoids. Our method attains ellipsoid-
specific fittings with the highest accuracy and is more robust against axis ratio.

Huber [19]. The results in the top right panel of Fig. 3 show that RIX is relatively sensitive
to outliers, especially when the outlier percentage exceeds 30%, which is consistent with
the results reported by the authors [25]. M-estimators of Tukey and Huber have similar per-
formance and are more robust than RIX, rooting from their weighting schemes for different
residuals. Nevertheless, with outliers increasing at 60%, they also generate more fitting de-
viations. In contrast, the proposed method works fairly well, and the deviations are kept
quite low and stable, even when outliers rise up to 60%, demonstrating its high robustness.
Comparison examples are presented in Fig. 4.

Effect of the axis ratio. We also investigate the influence of the axis ratio r, for ellipsoid
fitting given that many existing ellipsoid-specific approaches require a prior or have limita-
tions for axis ratio. We randomly generate a set of ellipsoids with r,, from 1 to 5 and the
statistical results are reported in the bottom right panel of Fig. 3. As observed, except our
method, the others produce significant deviations with r,, increasing. Taubin and Koop are
more sensitive to ., MQF also showing its weakness. RIX exhibits noticeable shape devia-
tions, whereas the proposed method achieves the highest accuracy for both metrics and keeps
them greatly stable. Note that we have excluded non-ellipsoid fittings in the statistic. Three
randomly generated ellipsoids with r,c = 5,8,10 (from top to bottom) and corresponding
fittings are shown in Fig. 5.

Ablation study of RDOS. RDOS is used to adaptively initialize the weight w = w
that balances GMM and the uniform distribution because w influences the performance and
setting it manually may bring significant deviations. We conduct an ablation study by tun-
ing different w for two outlier-contaminated cases (120 and 200 outliers). Results in the top
left panel of Fig. 6 show that, compared with the random setting of w € {0,0.1,0.5,0.9},
w—RDOS (w estimated by RDOS) can provide more reasonable initialization, leading to an
overall higher accuracy. Meanwhile, M = ¥'; cx 1(RDOS(x;) < 2) is taken to model sphere
points. We also report the effect of M for the previous two cases by fixing w = 0.375,0.5, re-
spectively. Results in the bottom left panel of Fig. 6 indicate that more deviations will emerge
if M is much less than the number of inliers. On the contrary, M — RDOS (M estimated by
RDOS) attains more satisfactory performance. Another simple choice is let M = N directly,
but this choice will make w = 0 in our method, resulting in significant errors. Despite we
can tune M by multiples of N such as %, it may expand efforts to find a suitable value. Thus,
we use adaptive RDOS for weight initialization and ellipsoid modeling, simultaneously.
Real-world scanned point clouds. We next apply our method to 3D point clouds captured
by a laser Picza scanner [25]. To boost fitting, we perform downsampling over the data
(sampling rate [0.2,0.4]), and there are 4,000 ~ 10,000 points of each model. As shown in
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Figure 6: Left: Ablation study of RDOS for the initialization of weight w (top) and the
estimation of the inlier amount M (bottom). Bold font indicates the top fitter; right: Our
method attains successful fittings for point clouds with outliers and occlusion.
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the right panel of Fig. 6, these point clouds bear evident occlusion or outliers that are usually
disastrous for LS-based methods. However, our fits exhibit acceptable results in the sense
that the ellipsoid surfaces approximate the objects well, by which metrics such as volume
and direction can be estimated. Thereby, the proposed method in general is quite suited to
densely sampled points attained by laser scanners or similar technologies.

6 Discussion and Conclusion

We have presented a robust and accurate method for ellipsoid-specific fitting in noisy/outlier-
contaminated 3D scenes. We use GMM to model the ellipsoid explicitly and cast it in an
MLE, which is effectively solved via the e-accelerated EM framework. Furthermore, a uni-
form distribution is added to depress outliers, and all parameters are updated automatically.
Comprehensive evaluations show that our method outperforms the compared ones by a large
margin, especially for noisy, outlier-contaminated, ellipsoid-specific, and large axis ratio
cases.

Given that our model is non-convex, EM may fall into local minima, but we scarcely
see in previous experiments which may benefit from the proper initialization by RDOS. The
number of mixture components in GMM depends on the measurement points, aiming to
approximate arbitrary distribution. For efficiency, in future work, we can trim components
based on the Gaussian bandwidth % to let GMM adaptively model the ellipsoid. Further-
more, we can explore the use of a single analytic distribution over the surface of an ellipsoid
for higher efficiency. Besides, we can replace Gaussian distribution by Student’s t distribu-
tion [30] to make the model more robust against noise with a heavy tail.

The proposed method can be generalized to fit other quadrics or conics, such as planes
and cylinders, given the existence of a parametric representation. We give a glance at other
quadric fittings in the supplemental material. Additionally, we can boost the fitting accuracy
by encapsulating more geometric features like normals and curvatures into the model.
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