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Abstract

Detecting ellipses from images is a fundamental task in many computer vision

applications. However, due to the complexity of real-world scenarios, it is still a

challenge to detect ellipses accurately and efficiently. In this paper, we propose

a novel method to tackle this problem based on the fast computation of con-

vex hull and directed graph, which achieves promising results on both accuracy

and efficiency. We use Depth-First-Search to extract branch-free curves after

adaptive edge detection. Line segments are used to represent the curvature

characteristic of the curves, followed by splitting at sharp corners and inflection

points to attain smooth arcs. Then the convex hull is constructed, together with

the distance, length, and direction constraints, to find co-elliptic arc pairs. Arcs

and their connectivity are encoded into a sparse directed graph, and then ellipses

are generated via a fast access of the adjacency list. Finally, salient ellipses are

selected subject to strict verification and weighted clustering. Extensive experi-

ments are conducted on eight real-world datasets (six publicly available and two

built by ourselves), as well as five synthetic datasets. Our method achieves the
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overall highest F-measure with competitive speed compared to representative

state-of-the-art methods.

Keywords: Ellipse Detection, Edge Following, Hough transform, RANSAC

1. Introduction

As one of the most common geometric primitives, ellipses often appear in

natural and artificial scenes. In particular, 3D circular or elliptic objects are

usually projected as ellipses on the image. Therefore, accurate detection and

localization of ellipses from images provides us with a powerful tool for pattern

recognition and visual understanding [1]. Actually, ellipse detection is broadly

applied in the fields of camera calibration [2, 3], industrial component inspec-

tion [4, 5], traffic sign detection [6], cell segmentation [7], pupil tracking [8],

object localization for the robotic platform [9], and so on. See Fig. 1 as a

reference.

Figure 1: A wide variety of applications of ellipse detection in the real world, which provides

us with a powerful tool for multiple visual understanding tasks.

Although ellipse detection problem has gained a lot of attention in liter-

ature, it is still very challenging. The major difficulties are the presence of
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noise, disturbance or occlusion by other objects, image blur or flaw, and vary-

ing illuminations. These issues either break the elliptic boundaries as several

low-quality arc segments, thus make the differential computations such as tan-

gents inaccurate, or leave the ellipse partially visible, which degrades the ellipse

fitting quality. Besides, the requirement of fast detection for real-time scenarios

further brings the difficulty.

As a well-known geometric primitive detector, Hough transform (HT) is

explored for ellipse detection by numerous work [10, 11, 12, 13, 14, 15]. However,

due to the five-dimensional (5D) parameter space of an ellipse, HT consumes

a noticeable amount of storage and time [16, 17], which seriously prevents its

applications, especially for complicated images needing high-speed processing.

Besides, HT suffers from the careful tuning of bin size and peak threshold, hence

it may detect false ellipses or lose positive ones if the model parameters are not

optimal.

The recent methods based on the edge following technique exhibit promis-

ing detection performance, in which the connectivity between edge pixels, con-

tinuity of arcs are used [18]. Candidate ellipses are generated by incremental

least-squares fitting or arc grouping. However, direct ellipse fitting for short

arcs inevitably results in errors [19]. Although other methods first group arcs

together, complex arc grouping strategies are usually designed, where differen-

tial calculations or HT are invoked, hence they are more sensitive to noise or

less efficient.

Different from aforementioned methods, in this paper, we introduce a new

ellipse detector by a more effective arc grouping scheme, aiming to improve the

detection ability in both accuracy and efficiency. We use Depth-First-Search

(DFS) to extract continuous edge curves, followed by the identification of sharp

corners and inflection points to attain smooth arcs. Then, the convex hull is

first introduced to distinguish the convexity of arc pairs, along with the fast

computation of arc distance, length, and directions. Due to the avoidance of

calculations of gradients and tangents for the edge pixels, our method is more

robust to noise. Based on these constraints, a sparse directed graph is built, by
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which arc pairs and their connectivity can be fast accessed to generate candidate

ellipses. Finally, a stringent verification and a discriminative clustering are ap-

plied to further improve the detection accuracy. In a nutshell, the contributions

of this work are as follows:

• a fast and accurate ellipse detector competent of detecting complicated

real-world images, as well as occluded, overlapping, concentric, and con-

current ellipses;

• a novel arc grouping scheme based on the efficient computation of the

convex hull and sparse directed graph, together with a more discriminative

clustering criterion to depress repetitive ellipses, and

• the superior performance with less time consumption on a series of datasets

compared with the representative state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we briefly review

the most related work from the perspective of ellipse generation and verification.

The detailed steps of our method are presented in Section 3. Then we describe

the datasets, experimental results, and performance of the proposed approach

in Section 4. A general conclusion and future work are given in Section 5.

2. Related Work

The significance of ellipse detection is witnessed by the large amount of work

presented in the literature. In general, they can be classified as Hough transform

based methods and edge following techniques.

2.1. Hough transform

Most of the traditional methods for ellipse detection rely on HT [20] to es-

timate the parameters, which casts the detection problem into a peak finding

process. The basic principle of HT is voting each edge pixel to a 5D param-

eter space, and then the local peak exceeding a certain threshold is selected

out as an ellipse. Although simple for implementation, it is usually unpractical
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to directly apply HT to ellipse detection in real images, due to the expensive

storage and time load, which are O(m5) and O(n5) [17], respectively. To reduce

the memory consumption, accelerate the detection, and improve the accuracy

of the standard HT, a great number of variants are put forward. Randomized

HT (RHT) [21] and probability HT (PHT) [22] sample subset of pixels rather

than all pixels for voting, and thus a many-to-one scheme is built to replace the

primary one-to-many scheme. McLaughlin [13] extends RHT to detect ellipses

by randomly selecting three non co-linear points, but it is sensitive to occlusion

and overlapping ellipses. Lu et al. [23] propose the iterative RHT to circumvent

the noise susceptibility of RHT, but it has to divide an image into sub-images for

multiple ellipse detection. On the other hand, some methods combine geometric

properties of ellipses with HT to lower the voting space. Xie et al. [24] estimate

the semi-axis length of the hypothetical ellipses to reduce the 5D space to 1D.

Similarly, Chia et al. [25] use the foci feature to realize the same effect. Geomet-

ric symmetry is also explored to decompose the voting space, by which elliptic

centers are first located and then the remaining parameters are solved [26, 27].

However, these methods are easily deteriorated by occluded or semi ellipses.

Besides, we point out that HT based methods are still inefficient in practice,

prone to generate false detection with the number of ellipses increasing, suffer

from noise and background clutter, and take much effort to tune the required

parameters such as the bin size and peak threshold [18].

(a) (b) (c) (d) (e)

Figure 2: The workflow of our proposed method. (a) Input image; (b) edge detection by

adaptive Canny detector [28]; (c) arc extraction via the identification of sharp corners and

infection points; (d) candidate ellipse generation after arc grouping; (e) finally detected el-

lipses after validation and clustering. The proposed method is competent to detect ellipses in

complex real-world images.
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2.2. Edge following

Different from HT working on the pixel level, edge following methods uti-

lize continuous arcs for ellipse detection, in which edge curves are extracted

and geometric characteristics such as convexity or tangents are explored. Com-

pared with HT, edge following methods are more efficient, and currently are the

benchmark among the ellipse detection field. For instances, Kim et al. [29] first

extract arcs approximated by short line segments, and then frequently use the

least-squares fitting to estimate elliptic parameters. Libuda et al. [30] improve

the performance of [29] with less memory consumption. Mai et al. [31] inherit

the idea of [29], but further link line segments to form arcs based on the adja-

cency and curvature constraints. However, due to the out of consideration for

validating candidate ellipses, there are multiple false detection. Chia et al. [32]

adopt a split and merge scheme for arcs, where co-elliptic arc pairs are grouped

as an alignment problem. Nevertheless, the complex and iterative optimiza-

tion process hinders its real-time usage in practice. The detector proposed by

Prasad et al. [1] makes use of the information of edge convexity and curvatures

for arc grouping, in which the search region is first determined, followed by a

line segment length judgment. Due to the incorporation of tangents and line-arc

intersecting, this method [1] is more complicated than our proposed method.

Although overall improvements are attained, it suffers from long computational

time. Fornaciari et al. [33] propose a fast ellipse detector for the embedded

vision system, in which arcs are classified into four quadrants based on the gra-

dient computation, and then parameters are estimated by the parallel chord

theorem and 2D HT voting. Jia et al. [34] promote the performance of [33] by

introducing a projective invariant to prune line segments and group arcs. How-

ever, both [33] and [34] encounter the same problem, that is the number of arcs

for grouping must be at least three, which is impractical for occluded or semi

ellipses. Dong et al. [35] take the similar scheme of [33] and incorporate the

gradient analysis, but also divide the arcs into four quadrants, hence inevitably

break the integrity of complete ellipses. Recently, Lu et al. [18] revisit the line

detection method proposed by [36] to attain a high-quality ellipse detector, be-
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cause of the iterative linking of line segments and voting for arcs, the method is

much slower than [34]. Meng et al. [37] design an arc adjacency matrix (AAM)

to represent the arc pair relationship, in which curvatures and tangents are

computed to make AAM sparse. However, as [24, 38] pointed, curvatures and

tangents are more sensitive to noise than edge points.

3. Methodology

Our method adopts a standard edge following framework, which contains

three main steps: (1) edge detection and elliptic arc extraction; (2) arc group-

ing and candidate ellipse generation; (3) ellipse validation and clustering. The

workflow of our method is shown in Fig. 2. We explain the details of each step

in the following.

3.1. Edge detection and elliptic arc extraction

Given an input image, the very first step is to extract the edge map. Here,

we implement an adaptive Canny detector [28] for this purpose, because of the

efficiency and avoidance of parameter tuning. The higher threshold ensures that

only 10% of the image pixels are marked as edge pixels, while the lower threshold

equates 0.3 times of the higher threshold. To attain branch-free curves as shown

in Fig. 3, given a seed point, we use the Depth-First-Search (DFS) to expand

continuous curves according to the 8-connected domain of the edge points.

After the attainment of branch-free curves, we continue to extract smooth

arcs. To this end, a parameter free method [39] improved from Ramer-Douglas-

Peucker (RDP) algorithm [40] is first applied to simplify curves via a series of

line segments {li = Pi−1Pi|Pi ∈ R2}ni=1, by which we can effectively compute

both the magnitude and direction of edge curvatures, as illustrated in Fig. 4(a).

An angle αi is a sharp corner, indicating the major variation in curvature mag-

nitude, if

cosαi =

−→
l i

‖−→l i‖2
·
−→
l i+1

‖−→l i+1‖2
≤ cosThθ, (1)
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P1

P2

Figure 3: The two bifurcation points P1 and P2 separate the edge curve into four branch-free

curves indicated by different colors.

where
−→
l ∗ is the directional vector of the line segment l∗, and Thθ is the angle

threshold. Further, a point between li and li+1 is an infection point, indicating

the variation in curvature direction, if

(

−→
l i−1

‖−→l i−1‖2
×
−→
l i

‖−→l i‖2
) · (

−→
l i

‖−→l i‖2
×
−→
l i+1

‖−→l i+1‖2
) = −1. (2)

Hence, α3 is a sharp corner while P6 is an inflection point in Fig. 4(a). Then

we split curves at these points to obtain arc segments.

To speed up the following processing, we further remove straight segments

based on the minimum area bounding box as illustrated in Fig. 4(b). We remove

the segment if its aspect ratio

max{Height,Width}
min{Height,Width} > Thr.

Since arc quality is critical for arc grouping, we further access each arc Arci by

computing its inlier ratio via ellipse fitting, which is defined as

I(Arci) =
1

|Arci|
∑

p∈Arci

1{dist(p, e) < ε}, (3)

where 1 is the indicator function and equates to one if and only if the distance

from the edge pixel p to the ellipse e is less than ε equal to one pixel in default.
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Width

Height

(a)

(b)

P1

P2

P3

P4
P5

P6

P7

P8
P9

P0

α1

α2 α3

α4

α5
α6

α7
α8

Figure 4: (a) An edge curve is approximated by nine line segments. From the inner and cross

products computation, we find that α3 is a sharp corner while P6 is an inflection point . (b)

The aspect ratio of the minimum area bounding box (dashed rectangle) is used to remove

straight segments for fast detection.

Arcs with low inlier ratio, i.e., I(Arci) < Thir, where Thir is the threshold,

are regarded as non-elliptic arcs thus are deleted. To keep consistency between

different arcs, edge points of each arc are stored in the counter-clockwise order.

3.2. Arc grouping and candidate ellipse generation

Since short arcs may result in major fitting errors, we first group them from

the same ellipse together by a local to global scheme. The local search aims

to link adjacent arc pairs caused by noise interference, while the global process

elaborates to group distant ones.

We introduce convex hull to represent the ellipse convexity, as illustrated in

Fig. 5. For every arc pair, supposing k points are sampled on each arc, referred to
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as {a1, a2, . . . , ak} and {b1, b2, . . . , bk}, then there are totally 2k points involved

for convex test, thereby 2k cross products are calculated. Given that each arc

is convex, actually we merely need to check the following four cross products:

a1

b1

b2
b3

bk

bk-1
bk-2

a2

a3ak-2
ak-1

ak

Figure 5: Convex hull test with k points on each of the two arcs.





−−−−→ak−1ak ×
−−→
akb1,

−−→
akb1 ×

−−→
b1b2

−−−−→
bk−1bk ×

−−→
bka1,

−−→
bka1 ×−−→a1a2

. (4)

In our method, for efficiency, we directly sample the endpoints and midpoints of

two arcs to define the convex hull, as shown in Fig. 6, thereby there are totally

six points. To check whether the polygon formed by these six points is convex,

we simply judge whether the sign of the cross product of adjacent line segments

are all positive, and two arcs Arci, Arcj are said constituting a convex hull if





sgn(
−−−→
M1E1 ×

−−−→
E1S2) > 0, sgn(

−−−→
E1S2 ×

−−−→
S2M2) > 0

sgn(
−−−→
M2E2 ×

−−−→
E2S1) > 0, sgn(

−−−→
E2S1 ×

−−−→
S1M1) > 0

(5)

From the local perspective, adjacent arcs tend to come from the same ellipse.

We find arc pairs whose end-point distance is no more than one pixel, and merge

them together if (1) the endpoints and midpoints of them constitute a convex

hull and (2) the inlier ratio of them is larger than each arc after merging. Local

grouping significantly reduces the number of arcs participating in the global
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(a)

(c)

(b)

(d)

S1

E1

M1

S2

E2

M2

S1

E1

M1

S2

E2

M2

S1

E1

M1

S2

E2

M2

S1

E1
M1

S2
E2

M2

Figure 6: Grouping arc pairs based on the convex hull computation, where Si, Ei, and Mi

are the endpoints and midpoints of Arci. The arcs in Case (d) form a convex hull, thereby

they can be grouped together, while the others cannot.

grouping, hence accelerating the detection process. Actually, noise causes many

adjacent arcs, and most of them can be merged, while other invalid arc pairs are

directly skipped in the subsequent processing. When two arcs Arci and Arcj

are not adjacent enough, we try to group them again by four global constraints.

Arc length constraint. If the length ratio of Arci and Arcj satisfies

1/Thlr < |Arci|/|Arcj | < Thlr,

then they are checked by subsequent constraints. Otherwise, the arc pair is

invalid and ignored. When two arcs with large length difference are fitted to an
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Figure 7: Fitting an ellipse for two arcs. Left: Arc pair with large difference in length, where

the short arc plays very limited impact on the fitting; Right: Arc pair with the similar length,

the fitted ellipse is influenced by them simultaneously.

ellipse, the result ellipse will fit the longer arc better, whereas the shorter one will

have very limited impact on the fitting, as shown in Fig. 7. Besides, arc length

constraint merely involves a simple comparison, and can effectively reduce the

subsequent computation. Hence, we adopt it to accelerate the detection.

Distance constraint. Although global constraints aim to group distant arcs,

two arcs apart largely are also less likely from the same ellipse. Arci and Arcj

are said satisfying the distance constraint if

dist(Mi,Mj)

max{|Arci|, |Arcj |}
< Thd,

where M∗ is the middle point of Arc∗, and dist(Mi,Mj) is the distance between

two middle points.

Convex hull constraint. According to the convexity of ellipses, Arci and

Arcj can be grouped if their endpoints and midpoints form a convex hull.

Direction constraint. Arc pair 〈Arci,Arcj〉 satisfying the above criterion are

called co-elliptic, referred to as Arci → Arcj . It should also note that the arcs

are connected in order, that is, Arci → Arcj and Arcj → Arci are two different

situations. Arcs should be connected counter-clockwise, as shown in Fig. 8 (a),

C is the center of the corresponding ellipse, and θi represents the rotation angle

from the positive x-axis to the vector
−−→
CMi. For example, M1 can be connected

to M2 if M1 is co-linear with C and M2 after a rotation with the angle no more

than 180◦,

fmod(θ2 − θ1 + 360◦, 360◦) < 180◦, (6)
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θ3

θ1θ2

Arc2

Arc3M3

M1

M2

Arc1

xC

Arc1

Arc2

Arc3

Arc4

Arc5

(a) (b)

Figure 8: (a) Connection of counter-clockwise arcs and computation of rotation angles rep-

resented by θi. (b) A path with self-intersection, which can be effectively removed by our

method.

where fmod(x, y) stands for the floating point remainder of the division oper-

ation x/y. In practice, we approximate the rotation angles {θi} based on the

pre-fitted ellipse in the inlier ratio step to speed up detection.

Local and global grouping discovers the relationship between any two arcs,

by which we construct a directed graph to encode the relationship of all arcs. In

the graph, vertices stand for arcs, and directed edges represent the connected

co-elliptic arc pairs in counter-clockwise direction. Because of the above strict

pairing constraints, the graph is usually sparse, thereby we use the adjacency

list to reduce the memory usage.

By depth-first searching the directed graph, we can obtain a path

Arck1 → Arck2 → · · · → Arckn ,

which represents a group of arcs where any two adjacent arcs are co-elliptic.

Thanks to the data structure of adjacency list, we can merely visit the neighbors

of a vertex without traversing the other vertices, hence greatly reduces the
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access time consumption. Note that there may exist complex paths with self-

intersection as illustrated in Fig. 8 (b). In this case, we use the following criteria

R =
1

360◦

n∑

i=1

∆θi

to filter out self-intersection paths if R 6= 1, where ∆θi is defined as

∆θi = fmod(θi+1modn − θi + 360◦, 360◦).

Intuitively, R represents the number of circles around the center when a virtual

point moves along the path. For valid paths, R is always equal to one. Through

the searching process, all co-elliptic arc groups are found, and then a direct

least-squares-based ellipse fitting [41] is applied to attain candidate ellipses.

3.3. Ellipse validation and clustering

Due to the discrete properties of edge pixels, there may exist false ellipses

among candidates. To further improve the detection accuracy, we execute an

ellipse validation and compute the salient score S(e) for each candidate ellipse

e formed by the arc group G, which is defined as

S(e) =
1∑

Arc∈G |Arc|
∑

Arc∈G

∑

p∈Arc

1{dist(p, e) < ε}, (7)

where p is the edge pixel from the corresponding Arc in the same group. A

candidate ellipse is validated to be true if S(e) ≥ Thss, otherwise we remove it

because of the unreliability. Let e = (a, b, xc, yc, θ) be the ellipse parameters,

where a, b are the semi-axis length, (xc, yc) is the elliptic center, and θ is the

rotation angle along the horizontal axis. Then, we use a weighted clustering

scheme based on the Euclidean distance to evaluate the distinctiveness of two

ellipses ei and ej

D(ei, ej) =

√√√√
5∑

λ=1

kλ · (eiλ − ejλ)2. (8)

Ellipses ei and ej are clustered together if D(ei, ej) < 20 (suggested by [14]).

The weight kλ is equal to one except for the rotation angle θ that is defined as

kθ = min{ai − bi
ai + bi

,
aj − bj
aj + bj

}.
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Note that this weighting scheme effectively eliminates the angle influence caused

by the rotation symmetry of circles.

We summarize the above steps in Alg. 1 for easier understanding.

4. Experimental Results

In this section, the performance of the proposed method is comprehensively

evaluated by a series of experiments including (1) parameter discussion, (2)

comparison with six representative state-of-the-art methods regarding synthetic

and real-world images, (3) robustness against ellipse variations, and (4) robust-

ness against the intersection over union (IoU) variations. All experiments are

executed on a desktop computer with Intel Core I7-7700K CPU @4.20 GHz and

32GB RAM.

Occlusion Overlapping Noise Concentric

Concurrent

Prasad Random

Smartphone

PCB

Satellite

Iris

TablewarePrasad+

Figure 9: Example images in the test datasets. Column 1-3 show the synthetic ellipses with

occlusion, overlapping, and noise, respectively. Column 4 includes synthetically concentric

and concurrent ellipses. Column 5-7 are the images from datasets Prasad, Random and

Smartphone, PCB and Satellite, respectively. The last column contains images from our new

datasets named Iris and Tableware.
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Algorithm 1 Fast and accurate ellipse detection

Input: I: Input image, Thss: Salient score threshold

Output: {ej}Nj=1: detected ellipses

1: Compute edge map Ie using adaptive Canny operator with Gaussian kernel

2: Collect continuous curve set C from Ie by depth-first-search

3: Initialize arc set A := ∅
4: for each curve ci ∈ C do

5: Use RDP to approximate ci by segments {li = Pi−1Pi|Pi ∈ R2}ni=1

6: Calculate angles between adjacent line segments li and li+1

7: Split ci at sharp corners and inflection points to get arcs {ai}mi=1

8: Remove arcs that are too short or straight

9: Sort the edge points of ai in counter clockwise to get arc set Ai

10: A := A ∪Ai
11: end for

12: Initialize the directed graph D :=< V,E >, where V = A,E = ∅
13: for each arc pair < ai, aj >∈ A×A do

14: if < ai, aj > satisfies the four grouping constraints then

15: E := E∪ < ai, aj >

16: end if

17: end for

18: Initialize result ellipse set Ells := ∅
19: while exist unvisited vertex u∗ ∈ V do

20: Adopt depth-first-search on u∗ to find simple loops

21: Fit ellipse to the arcs to get candidate Ell∗

22: if inlier ratio of Ell∗ ≥ Tss then

23: Ells := Ells ∪ Ell∗

24: end if

25: end while

26: Cluster the ellipses according to the weighted Euclidean distance

27: Output the detected ellipses {ej}Nj=1
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4.1. Datasets

We use five synthetic datasets and eight real-world datasets to verify the gen-

eral capability of the proposed ellipse detector. Fig. 9 illustrates several images

from these datasets, which have different characteristics as described in the fol-

lowing. Our code and all datasets will be available at https://github.com/Convex

AndDigraphBasedEllipseDetection/EllipseDetector.

Synthetic datasets. Synthetic ellipses involving occlusion, overlapping, noise,

concentric, and concurrent are tested. There are 300 images with occluded el-

lipses and 300 images with overlapping ones [1], with the resolution of 300 ×
300. Each image has β ∈ {4, 8, 12, 16, 20, 24} ellipses under the constraint that

they must overlap with at least one ellipse. The complex occlusion or over-

lapping, especially with the number of ellipses increasing, make the detection

tough enough. To test the robustness of the ellipse detector, we use the func-

tion imnoise(img, ’salt & pepper’, density) in Matlab with density ranging from

4% to 24% at the step 4% to add salt-and-pepper noise in the images with 8

overlapping ellipses. Besides, we further test 720 images with concentric ellipses

and 1,200 images with concurrent ones [37] under the resolution 600 × 600.

These images are challenging enough because of the multiple cracked arcs for

grouping.

Real-world datasets. Dataset Prasad [1] has 400 images sampled from 48 cat-

egories in Caltech256 dataset [42]. However, there are only 198 images available

online, and we complement the missing part named Dataset Prasad+ according

to the file provided by the authors. The varying image size with cluttered back-

ground is the major challenge. Dataset Random [33] also contains 400 images

up to 1,280 × 960 from MIRFlickr and LabelMe repositories [43] [44]. The high

resolution and noisy interference dramatically degrade the detection speed and

effectiveness. Dataset Smartphone [33] has 629 images collected from a video.

The existence of image blur and perspective transformation is the main diffi-

culty. Dataset PCB [45] has 100 industrial printed circuit board images. The

concentric structure and substantial white noise adversely impact the detection

performance. The satellite dataset [37] contains 757 optical images and 440
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infrared images, which are captured by the OEDMS and NextSat spacecraft

infrared cameras, respectively. The space light, camera noise, and the far small

ellipses are hard to detect. Furthermore, we provide two new datasets named

Iris and Tableware containing 100 images, respectively. Dataset Iris is used to

test the detection capability for small ellipses, which are selected from CASIA

Iris Database [46], while Tableware aims to simulate the robotic manipulation

of elliptical objects. All ground truth images are labeled by ourselves manually

and precisely.

4.2. Evaluation metrics

To quantitatively evaluate the performance of the proposed method, three

well-known metrics from information retrieval are utilized, i.e., precision, recall,

and F-measure, which are defined as

Precision =
|TP|

|TP+ FP| , Recall =
|TP|

|TP+ FN| .

F-measure = 2× Precision× Recall

Precision + Recall
.

Here, TP, FP, and FN represent the true positives, false positives, and false

negatives, respectively. A detected ellipse ed is considered to be a true positive

if its intersection over union (IoU) regarding the ground truth et is no less than

γ (γ = 0.95 for synthetic images and 0.8 for real images, as suggested in [33]).

Otherwise, it is a false positive, and a ground truth not rightly recognized is

seen as a false negative. Note that F-measure is a comprehensive performance

metric. IoU is defined as

IoU(ed, et) =
area(ed) ∩ area(et)

area(ed) ∪ area(et)
,

where area(e∗) denotes the number of pixels inside the ellipse e∗. The proposed

ellipse detector is compared with six representative state-of-the-art methods in-

cluding Libuda [30], Prasad1 [1], Fornaciari [33], Jia [34], Lu [18], and Meng [37].

1The implementation online for Prasad is incomplete. We re-implement the validation part

based on the Section 4 in the original paper [1], as faithfully as possible.
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The source code of these methods are publicly available online, and Prasad and

Lu are implemented in Matlab, while the others and ours are in C++.
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Figure 10: Investigation of the salient score parameter Thss on five datasets listed on top. A

better choice of Thss falls in [0.5, 0.7], considering the F-measure and time consumption.

4.3. Parameter discussion

Our method mainly involves six parameters, which are discussed in the fol-

lowing. (1) The angle threshold Thθ is used to discover sharp corners, and larger

value will tolerate curves with larger curvature. Based on the elliptic curvature,

we fix Thθ = 46◦ as it performs well for general images. (2) Thr is the aspect

ratio of bounding box to remove straight segments, and we can speed up the

detection process by setting relatively small ones. However, more arcs will also

be deleted. Extensive experiments suggest that Thr = 10 is a better balance

between the effectiveness and efficiency. (3) Inlier ratio threshold Thir is used

to attain high-quality arcs. Admittedly, larger threshold will keep better arcs,
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but considering the discrete pixels, we choose Thir = 0.7 for use. (4) In the arc

grouping step, Thlr is the length ratio tolerance of two arcs. Because too short

arcs hardly provide rich information, we let Thlr be equal to 6 to find similar

arc pairs. (5) Thd is used to evaluate the distance between two arcs, due to the

image size limit, big values less likely emerge, we set Thd = 10 to incorporate

as many arc pairs as possible. Since the fine and stable performance of these

parameters for hundreds of images, we fixing them as intrinsic ones without

user tuning. (6) The last parameter Thss in the validation step is used to select

salient ellipses. We open it as an adjustable parameter according to the prac-

tical requirement. Additionally, to reveal the performance variation regarding

different Thss, we test five datasets as illustrated in Fig. 10. As observed, with

Thss increasing, precision first goes up and then decreases after Thss > 0.8,

while recall starts to reduce when Thss > 0.5 and decreases significantly when

Thss > 0.7, thereby strict verification will lower down the metric recall. In

practice, we can slightly relax Thss to let more candidate ellipses be true posi-

tives. Taking time consumption into consideration, we suggest Thss ∈ [0.5, 0.7]

in practice.

4.4. Test on synthetic datasets

We report the detection results of synthetic images including occlusion, over-

lapping, noise, concentric, and concurrent in Fig. 11. As observed, the proposed

detector attains the highest F-measure on datasets occlusion, concentric and

concurrent, as well as the highest precision with the value more than 80%,

which demonstrates its superior localization accuracy. Methods Lu and Meng

share the similar performance and are lower than ours. Besides, Fornaciari has

the lowest F-measure and precision on these three datasets, whereas Jia is better

than Fornaciari, indicating the effectiveness of the added projective invariant.

However, the performance of Jia and Prasad are still unsatisfactory and are

lower than Libuda. Except the occlusion case, our method also achieves the

highest recall on concentric and concurrent cases. For overlapping ellipses, the

proposed detector has the highest F-measure when the number of ellipses is less
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Figure 11: Ellipse detection results on synthetic datasets. Our method achieves the overall

highest F-measure with superior precision.

than 20. With more ellipses, although the F-measure is lower than Lu, we still

achieve the second highest one, together with the second highest recall, and Lu

embraces the best recall. Nevertheless, we remain the highest precision. Note

that as the number of overlapping ellipses increases, the F-measure and recall of

Prasad and Jia tend to zero, which indicates that they are subject to complex

scenes. For noisy test, our method returns acceptable results when the noise

level is no more than 8%. With the noise level increasing, the performance of

all methods decreases rapidly, it is because heavy noise breaks continuous arcs

as small fragments, which adversely influences the arc grouping process. There-

fore, a simple denoising step is helpful. Several detection examples and more

noisy images are presented in Fig. 12 and Fig. 13, respectively.

4.5. Test on real-world datasets

Besides synthetic test, we further report the test results on eight real-world

datasets. The F-measure and time consumption are given in Table 1 and 2,

respectively, where the red and blue colors indicate the two best F-measure.
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Figure 12: Ellipse detection examples on synthetic images with occlusion, overlapping, noise,

concentric, and concurrent. Our method detects most of the true positives while making less

false positives.

From Table 1, we can see that the proposed method attains the highest F-

measure on five datasets and achieves the best detection effectiveness in general.

Lu achieves the second best F-measure, but its detection speed is much slower

than ours as shown in Table 2. Meng gets the third place along with the fastest

speed, which benefits from its optimization operation. Jia also has the relatively

small execution time, but the F-measure is a little low. Although Libuda has

the fifth highest F-measure on the whole, it performs well on small ellipses,

which can be concluded from the dataset Iris. But the time consumption of

Libuda is very expensive and is much more than ours. Methods Fornaciari and

Prasad share the similar F-measure, but Prasad takes significantly long time,

even 100 times than ours, which suffers from the process of complex arc grouping

and HT voting. However, the F-measure of both Fornaciari and Prasad are far

from satisfactory, especially for complicated images with occlusion or noise, such

as the images in datasets Tableware and Satellite. As a whole, the proposed
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Figure 13: Ellipse detection examples on noisy images. The proposed method has the most

true positives.
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Table 1: Comparison on the eight real-world datasets of six different methods in terms of

F-measure (%). Red and blue colors indicate the best two performance, respectively. Our

method achieves the overall highest F-measure.

Method Prasad Prasad+ Random Smartphone PCB Satellite Iris Tableware

Libuda 30.82 40.86 37.49 40.09 61.22 31.74 64.81 16.65

Prasad 28.78 21.35 29.1 22.25 56.11 6.81 55.52 33.07

Fornaciari 28.88 31.34 30.62 19.18 55.89 28.79 57.44 15.74

Jia 33.42 48.96 50.15 52.21 74.84 22.21 58.57 54.74

Lu 50.91 65.39 60.02 64.02 80.22 45.03 66.37 54.59

Meng 43.81 54.67 50.05 56.5 70.79 56.65 66.25 53.06

Ours 45.58 66.78 61.12 74.89 79.46 47.76 75.36 62.9

Table 2: Time (ms) comparison on the eight real-world datasets of six different methods. The

proposed method can be used for camera video processing of 30 fps.

Method Prasad Prasad+ Random Smartphone PCB Satellite Iris Tableware

Libuda 12.38 20.36 32.04 52.07 26.94 8.92 14.88 95.11

Prasad 1870.99 5222.84 5153.76 11743 533.97 1074.05 1451.36 16294.7

Fornaciari 3.88 10.9 11.73 16.84 5.08 2.77 2.92 74.93

Jia 3.47 7.18 9.6 12.6 4.87 2.44 2.87 40.02

Lu 78.67 277.92 334.1 618.25 54.53 17.19 27.77 4607.49

Meng 3.19 5.25 8.24 11.55 3.33 2.61 3.01 26.35

Ours 7.94 13.15 16.38 19.16 7.1 4.67 4.89 40.98

method embraces the highest F-measure with fairly well competitive running

time. Several ellipse detection examples are presented in Fig. 16. Note that

the execution time of our method suggests that we can work on general camera

video with 30Hz rate.

4.6. Robustness to ellipse variations

To further investigate the robustness of our method for ellipse variations

regarding size, orientation, and incompleteness, we generate three datasets with

image size 512 × 512. The first dataset has 20,000 images with the semi-major

axis length varying from 1 to 200 pixels, meanwhile, the axis ratio increases

from 0.01 to 1 at the step 0.01. To evaluate the robustness against rotation

angles, we build the second dataset by rotating the ellipse from 1◦ to 180◦ at

the step 1◦, fixing the semi-major axis equal to 200 pixels and varying the axis
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ratio from 0.01 to 1 at the step 0.01, hence there are 18,000 images for test. The

last dataset involving 36,000 images aims to check the capacity for incomplete

ellipses, where the angular coverage is from 1◦ to 360◦ at the step 1◦ and the

axis ratio ranges from 0.01 to 1 at the step 0.01.

(    ) (  )(px)

Figure 14: Robustness test results under different ellipse variations. The horizontal axis

indicates the axes ratio of semi-minor axis to semi-major one, ranging from 0.01 to 1 at the

step 0.01. The vertical axes are the semi-major axis length in pixel, angular coverage of ellipse

arc, and ellipse orientation, respectively. Our method embraces a wide range of successful area

indicated by the white region.

The results of ellipse variations are reported in Fig. 14, where the white

region indicates the correctly detected ellipses and the black region means the

failure cases. From Fig. 14(a), we conclude that our detector has a wide range of

successful area and can detect small ellipses with the semi-major axis around 25

pixels and axis ratio slightly below 0.2. Fig. 14(b) shows that our method is able

to detect incomplete ellipses with angular coverage about 150◦. Furthermore,

we can improve the robustness to incomplete ellipses by slightly lowering down

the salient score in the validation step. The black region distributes vertically

in Fig. 14(c), indicating that our method is very robust to ellipse orientation,

which is a basic nature for high-quality ellipse detector.

4.7. Robustness to IoU variations

We also test the robustness of different methods against IoU. To this end,

we vary IoU from 0.5 to 0.95 at the step of 0.05 on three datasets. Admittedly,
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higher IoU brings more stricter constraint of an ellipse being regarded as a true

positive. The detection results are reported in Fig. 15. From which, we can see

that our method achieves the highest precision on all datasets. Although our

recall is slightly lower, we still has the best comprehensive metric F-measure,

which demonstrates the high quality performance of our detector. In contrast,

Fornaciari attains the highest recall, however, due to the lowest precision, its F-

measure is far from satisfactory. With the value of IoU increasing, all methods

show descending trend, whereas our method keeps the F-measure higher than

60% when IoU <= 0.8. When IoU = 0.95, although the F-measure of some

methods drop below 10% such as Prasad and Fornaciari on dataset Smartphone,

we still has the F-measure more than 20%, which indicates the robustness of

the proposed detector to IoU variations.
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Figure 15: Robustness test results by varying different IoU values. The proposed method

achieves the highest F-measure.
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Figure 16: Sampled ellipse detection results on real-world images. The first column presents

the input images from the eight datasets, and detection results of different methods are pre-

sented in the second to last columns. The proposed method detects the most true positives

without false positives.

5. Conclusions

In this paper, we have presented a novel ellipse detection method by in-

troducing the convex hull and directed graph, which performs accurately and

efficiently for versatile synthetic and real-world images. We have made innova-

tive improvements compared with previous ones. Smooth arcs are extracted by

the identification of sharp corners and inflection points based on the immediate

computation of inner and cross products. According to the ellipse convexity,

we use convex hull to judge the convexity between arc pairs, since merely four
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cross products are needed, the computation is fast. By incorporating other con-

straints, a local to global arc grouping strategy is established. The relationship

between arc pairs is encoded in a directed graph, by which all arcs from the

same ellipse are found to generate candidate ellipses. Moreover, a rigorous veri-

fication and weighted clustering further enhance the accuracy by rejecting false

positives and repetitive ones.

Extensive experiments on 13 datasets compared with 6 representative state-

of-the-art methods demonstrate the superior performance of our method, which

also has a good potential for video stream processing. In the future, we plan

to apply our detector to more dedicated tasks such as camera calibration and

robotic grasping.
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