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ABSTRACT
We present a novel yet effective method for detecting ellipti-
cal primitives in cluttered, occluded images, which has versa-
tile applications in computer vision and multimedia process-
ing fields. We begin by the fast extraction of smooth arcs
from the edge map, followed by the construction of a directed
graph and a disjoint-set forest, whereby the arc relationships
are effectively encoded to enhance the arc grouping process.
Compared with representative approaches such as the depth-
first search, the disjoint-set forest enables complete grouping
of arcs to generate candidate ellipses. Moreover, it merely has
linear memory complexity and constant access time, hence
guarantees fast detection. To boost precision and remove false
positives, we propose to project the candidate ellipses onto the
original image, to align the gradients of ellipses and the image
pixels. We also vectorize the elliptical parameters to depress
duplicated candidates. We perform extensive experiments on
both synthetic and challenging real-world datasets, to show
that our detector is accurate and efficient, as well as versa-
tile in many practical tasks. The source code and datasets are
available at https://github.com/xiaowuga/EDSF.

Index Terms— Ellipse detection, disjoint-set forest, geo-
metric primitives, geometric camera calibration

1. INTRODUCTION

The detection of elliptical primitives from images has various
applications in a wide variety of computer vision and multi-
media processing tasks, such as traffic sign location [1], eye or
head tracking [2, 3], industrial inspection [4], robotic grasp-
ing [5, 6], camera calibration [7], and so on. However, de-
signing a fast and reliable general-purpose ellipse detector is
still a challenging mission [8]. The crucial aspects comprise
the noise contamination, sophisticated backgrounds, varying
illuminations and concentric structure. For instance, multiple
concentric ellipses typically incur erroneous arc grouping, re-
sulting in false negatives or duplicated detections (Fig. 1).

The most classical geometric primitive detector is the
Hough Transform (HT) [13], which transforms the detection
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Fig. 1. Comparison of state-of-the-art approaches and ours on
images with multiple concentric ellipses. Green ellipses indi-
cate false detections due to incorrect or insufficient arc group-
ing, whereas our method successfully detects all ellipses.

task as a peak finding process in a parametric voting space.
Nevertheless, due to the five-dimensional elliptical param-
eters (xc, yc, a, b, θ), where (xc, yc) is the center position,
(a, b) are the semi-axis lengths, and θ is the rotation angle
along the x−axis, HT typically has long computing time and
large memory consumption. Moreover, it suffers from images
with complicated backgrounds and concentric structure [14].
Later, many variants of HT are proposed to either speed up the
detection or decrease the memory usage, such as the random-
ized and probabilistic HT [15, 16] and methods that combine
HT with the elliptical geometric properties [17]. Despite im-
provements have been attained, these methods are still less
efficient, particularly for complicated images. Additionally,
they are prone to incur false positives due to the lack of effec-
tive verification and the inappropriate tuning of the bin size.

Latterly, edge chaining methods are given more promi-
nence and have been proved quite efficient for ellipse detec-
tion [9, 18, 10, 19, 11]. These approaches utilize continuous
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Fig. 2. Overview of the proposed method. (a) Input image. (b) Edge detection using an adaptive edge detector. (c) Arc
extraction by splitting at sharp corners and inflection points. (d) Candidate ellipse generation by the disjoint-set forest. (e)
Finally detected ellipses after gradient validation and clustering. It has fast detection benefit from the parallel implementation.

arcs rather than discrete pixels like HT to generate candidate
ellipses. For instance, Chia et al. [20] formalize arc grouping
as a pairwise matching task and attain optimal ellipses based
on a feedback iteration. Prasad et al. [21] design a searching
region based on ellipse curvature to combine arcs together,
however, due to the incorporation of 2D HT, the method is
computationally expensive. Fornaciari et al. [9] and Jia et
al. [10] adopt the similar paradigm to split ellipses into four
quadrants by gradient computation, and re-group arcs through
differential such as tangents. Although they are efficient, the
number of grouping arcs must be at least three, hence these
methods are susceptible to occluded or semi ellipses. Re-
cently, Meng et al. [11] propose an adjacency-matrix-based
arc grouping method by curvatures, while Shen et al. [12]
leverage convex hull to generate ellipses. Compared with
previous approaches, these two methods are more accurate
and efficient. Nevertheless, since the brute-force depth-first
search strategy is invoked in both methods, they are prone
to consume much memory or losing ellipses with concentric
configuration.

In this work, our goal is to propose a fast and high-
precision detector allowing to reliably recognize elliptical
primitives, regardless of the image size and content, which
has a spectrum of applications in practice. Concretely, based
on the convexity and smoothness of ellipses, we use vector
computations to efficiently recognize sharp corners and in-
flection points to attain smooth arcs, then we design four ge-
ometric constraints to judge arcs that if they are potentially
from the same ellipse, followed by the modeling and encod-
ing of arc relationships into a disjoint-set forest (DSF), by
which all arc grouping cases are enumerated. DSF only has a
linear memory complexity O(n) (n is the number of arc ele-
ments), and is one of the most efficient data structure that can
be accessed with nearly constant time complexity [22], hence
paves the way for fast detection. To depress false positives
and duplicated candidates, we propose a gradient projection
method to discriminate the ellipse geometry with the pixel
gradients of the original input image. From such operation,
we can reliably determine inliers on ellipses, thereby enhance
the detection accuracy. We perform extensive experiments to
assess the proposed ellipse detector and compare it with rep-
resentative state-of-the-art approaches in both synthetic and

real-world images. Results evidence that our detector is fast
and outperforms competitors with higher F-measure, as well
as being more robust against occlusion.

Our main contributions are: (1) We propose effective
geometric constrains with disjoint-set forest for fast and ac-
curate ellipse detection, capable of handling complicated real-
world images. (2) We introduce the disjoint-set forest to en-
code arc relationships for fast access, and ensure complete
arc grouping without omissions. (3) Our approach achieves
higher F-measure and is faster than most competitors on both
synthetic and real-world benchmark datasets.

2. METHODOLOGY

Our proposed method consists of three main steps, as shown
in Fig. 2: (1) adaptive edge detection and elliptical arc extrac-
tion; (2) candidate ellipse generation by construction of the
directed graph and disjoint-set forest; (3) false positives and
duplicated candidate depression via gradient validation and
clustering. We present each step in the following.

2.1. Adaptive edge detection and arc extraction

Given an input image (Fig. 2(a)), the adaptive edge extrac-
tion method [23] is adopted to detect edge segments due to its
efficiency and the avoidance of parameter tuning (Fig. 2(b)).
Then we use fast vector computations to extract smooth arcs.
First, the Ramer-Douglas-Peuker (RDP) algorithm [24] is
applied to approximate edges via a series of line segments
{li = Pi−1Pi|Pi ∈ R2}ni=1, where P∗ is referred as the dom-
inant point, and the direction vector of li is

−→
l i. We use par-

allel computation to speed up the RDP process. According
to the smoothness and convexity of ellipses, we split edge
curves at sharp corners (where curvatures vary significantly)
and inflection points (indicating the change of convexity and
concavity) to attain smooth arcs, in which the inner and cross
products of direction vectors are used. As illustrated in the
left of Fig. 3, an angle αi between li and li+1 indicates a
sharp corner if

cosαi =

−→
l i

∥
−→
l i∥2

·
−→
l i+1

∥
−→
l i+1∥2

≤ cosTα, (1)
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Fig. 3. Left: Recognition of sharp corners (α2) and inflection
points (P4). Right: Arc grouping via the position and the
continuity constraints, where ak∗ , M∗ and L∗ denote the kth

dominant point, midpoint and chord equation of the arc a∗.

where Tα is the angle threshold. Inflection points are identi-
fied by means of the cross product, i.e., if

(
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) = −1, (2)

then the start point of
−→
l i denotes an inflection point. Edges

are split at these sharp corners and inflection points to attain
smooth elliptical arcs {aj ∈ R2}mj=1 (indicated by different
colors in the left of Fig. 3).

2.2. Candidate ellipse generation

We use nodes of a directed graph to represent arcs, and the
directed edges are pointed from the longer arc to the shorter
one. Two nodes are connected by a directed edge if they sat-
isfy the following geometric constraints, meaning that they
may come from the same ellipse.
Position constraint. As shown in the right of Fig. 3, let the
chord equation of ai be Li : Aix+Biy+Ci = 0 (Ai, Bi, Ci

are coefficients), and ai, aj are said satisfying the position
constraint if

Li(Mi) · Li(Mj) < 0 ∧ Lj(Mi) · Lj(Mj) < 0, (3)

where Mi is the midpoint of ai. This constraint indeed reflects
the convexity of two elliptical arcs in the two half planes.
Arc length constraint. If the length of ai and aj satisfies

1/Tlr < ∥ai∥2/∥aj∥2 < Tlr, (4)

then they will be checked by the subsequent constraints.
When the length difference of two arcs are too large, the long
arc will play a dominant role among the fitting, which is al-
most the same as the long arc fitting alone, hence such a di-
rected edge has little effect on the detection result.
Distance constraint. Due to the limited object shape in im-
ages, two arcs with large distance are less likely from the
same ellipse. If ai and aj fail to satisfy

∥MiMj∥2 < Td · (∥ai∥2 + ∥aj∥2), (5)

then we remove them to accelerate detection.
Blending constraint. After satisfying the above constraints,
we further consider the blending constraint. As shown in the
right of Fig. 3, two arcs ai and aj can be blended together
if there is no inflection point among the segments generated
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Fig. 4. Candidate ellipse generation. Each node of the di-
rected graph (b) stands for an arc in the arc map (a). (c) is the
disjoint-set forest of the left directed graph, in which green
and black arrows indicate the brotherhood and the parent-
child relationship of two nodes, respectively.

by {a2i , a1i , anj , a
n−1
j } and {an−1

i , ani , a
1
j , a

2
j}. This constraint

can reduce the disadvantage of concentric arcs for grouping.
Arc grouping by the disjoint-set forest. After the construc-
tion of directed graph (Fig. 4(b)), since there will be several
candidate ellipses sharing with the same ai such as the con-
centric cases, we adopt the disjoint-set forest for arc grouping.
As shown in Fig. 4(c), we copy the node A to be the root of
a tree and the brother of A is denoted as E. Different from
the primary disjoint-set forest, we allow a node has several
father nodes, such as node C has two fathers A and E, which
means that C belongs to two candidate ellipses at the same
time. Besides, two nodes connected by a directed edge may
already belong to an existent ellipse such as node B and C
in Fig. 4(c), thereby we can skip them to accelerate the arc
grouping process. We allow for an arc to be a node of an
existent candidate ellipse CE if its integrity increases. The
integrity I of an ellipse is defined as

I =

∑
p∈arc 1(dist(p, CE) < ϵ)

LCE
, (6)

where 1 is an indicator function and equates to one if and
only if the distance from the arc pixel p to CE is less than ϵ,
and LCE is the approximation circumference of ellipse calcu-
lated by the Ramanujun’s formula.To further improve detec-
tion precision and depress duplicate ellipses, we perform the
subsequent validation and clustering.

2.3. Gradient projection and feature clustering

If the detected ellipse is correct, then it will match well with
the original ellipse in the image. To utilize this prior feature,
we project CE = (xc, yc, a, b, θ) to the image by uniformly
sampling n points from the elliptical parameter equation:{

xi = a · cos θ · cosα+ b · sin θ · sinα+ xc

yi = −a · cos θ · sinα+ b · sin θ · cosα+ yc
(7)

where α ∈ [0, 2π). By means of the elliptical gradient
( ∂f
∂xi

, ∂f
∂yi

)T = (2Axi+2Byi+2D, 2Bxi+2Cyi+2E)T (de-
duced in the supplemental material), we compute the match
score S of the candidate ellipse CE as

S(CE) = 1

n

n∑
i=1

1(vd · vg ≥ cosTgrad), (8)



where vd denotes the normalized vector ( ∂f
∂xi

, ∂f
∂yi

)T , vg =

(gx, gy)
T is the gradient of pixel (xi, yi) calculated by the

Sobel operator and Tgrad is an angle threshold. Candidate el-
lipses with matching score less than a preset tolerance will be
discarded. We further vectorize the five elliptical parameters
and calculate the Euclidean distance to cluster similar ellipses
or depress duplicated ones. If the distance

Dist(CEi, CEj) =

√√√√ 5∑
λ=1

∥CEiλ − CEjλ∥2 (9)

between two candidate ellipses CE i and CEj is small enough,
then we generate a directed edge pointing from the node with
higher matching score (Eq. 8) to the one with lower score.
Thereby we finally keep the candidate ellipses corresponding
to the node with zero in-degree in the directed graph, which
stands for the salient detections.

3. EXPERIMENTS AND DISCUSSIONS

Implementation details. To assess the effectiveness and ef-
ficiency of the proposed method, we perform a series of ex-
periments and compare our method with representative state-
of-the-art approaches including Fornaciari et al. [9], Jia et al.
[10], Meng et al. [11] and Shen et al. [12]. Our algorithm is
implemented in C++ with the support library OpenCV 4.5.3.
The source codes of the others are available online also im-
plemented in C++. We use the default or fine-tuning hyper-
parameters of each method to achieve their best performance,
and their parameter setting details are reported in the supple-
mental material. All experiments are conducted in Intel(R)
Core i7-7700K CPU@4.2GHz with 4 cores and 48GB RAM.
Evaluation metrics. We adopt precision, recall and F-
measure to quantitatively evaluate the experimental re-
sults, which are defined as Precision = |TP |/|DE|,
Recall = |TP |/|GT |, and F-measure = 2 × Precision ×
Recall/(Precision + Recall), where |TP |, |DE| and |GT |
stand for the number of true positives, detected and ground
truth ellipses, respectively. An ellipse Ed is to be a true
positive if the Intersection over Union (IoU) between it
and a ground truth ellipse Et is larger than 0.8. We use
area(Ed)∩area(Et)
area(Ed)∪area(Et)

to compute the IoU, and area(E∗) is the
number of pixels inside the ellipse E∗.
Occlusion test. Incomplete ellipses are quite common in
practical scenarios, which is also one of the challenges in
ellipse detection. To demonstrate the robustness of the
proposed method against occlusion, we adopt a synthetic
dataset [21] comprising of six sub-datasets for test, and each
sub-dataset has 100 images with {4, 8, 12, 16, 20, 24} oc-
cluded ellipses. The constraint is that each ellipse must com-
pletely lie in the image and overlap with at least another one
ellipse. Fig. 5 shows the statistic results of precision, recall,
F-measure and executing time in millisecond. As observed,
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Fig. 5. Results on synthetic occlusion datasets. Our method
achieves the highest F-measure with high speed.
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Fig. 6. Detection samples of occlusion ellipses. The pro-
posed method has the most true positives than competitors.

with the number of occlusion ellipses increasing from 4 to
24, the precision, recall and F-measure decreases, and the ex-
ecuting time increases. The proposed method attains com-
parable precision with Shen and Meng, but has the highest
recall and F-measure, indicating that our method can find as
many correct combinations of elliptic arcs as possible. In
contrast, the performance of Jia and Fornaciari is relatively
unsatisfactory. As for efficiency, our detection speed is fast
enough and is comparable to that of Meng, as well as being
three times faster than Shen. It is worth mentioning that the
method Meng requires a time-consuming initialization to ex-
ecute the ellipse fitting procedure, which is not counted in
the algorithm test. We present several detection samples in
Fig. 6, where our method recognizes the most true positives
among all the compared approaches, demonstrating its high
recall and F-measure.
Real-world images. We also test the performance of
our method on four cluttered real-world datasets, including
Prasad+ [21], Random [9], Smartphone [9] and Tableware
[12]. Prasad+ has 193 low-resolution images from the Cal-
tech256 dataset, while Random is a multi-class dataset con-
tains 400 images collected from the MIRFlickr and LabelMe
repositories. Dataset Smartphone has 629 frames with the res-
olution 640 × 480 attained from several videos. Due to the
varying illuminations, skew perspectives and the image blur,



Table 1. Performance comparison of different methods on the
four real-world datasets and our collected concentric ellipses,
where green and red font indicate the first and the second
best F-measure.

Dataset Metric [9] [10] [11] [12] Ours

Prasad+

F-measure 34.0 43.9 58.5 43.6 59.7
Time(ms) 17.22 16.92 19.17 17.17 12.88
Precision 48.6 80.0 76.6 85.4 76.5
Recall 52.8 44.1 55.6 34.2 60.6

Random

F-measure 31.6 45.6 56.9 49.2 61.3
Time(ms) 11.30 12.15 10.98 17.00 15.23
Precision 50.0 75.0 77.5 86.2 81.6
Recall 49.1 47.6 55.7 43.5 59.2

Smartphone

F-measure 25.4 48.0 74.1 68.3 73.6
Time(ms) 17.70 14.66 17.43 23.81 18.73
Precision 43.2 63.0 82.0 86.1 81.6
Recall 52.3 63.8 80.0 67.2 76.7

Tableware

F-measure 30.0 50.0 52.3 49.4 58.8
Time(ms) 138.38 88.23 45.80 67.68 31.11
Precision 40.9 56.6 58.4 56.6 76.3
Recall 55.7 66.4 61.2 61.4 64.2

Concentric

F-measure 44.5 57.6 64.9 64.8 75.8
Time(ms) 227.33 101.06 121.2 154.8 88.3
Precision 35.8 54.4 67.1 57.5 75.3
Recall 77.0 74.0 72.2 80.4 81.1

this dataset is challenging enough for detection [9]. The last
dataset Tableware has 100 images and there are many con-
centric elliptical objects in it, which is first designed for robot
grasping of elliptical objects on a table.

We report the average quantitative results in Table. 1,
where our method achieves the overall best F-measure on the
four datasets, which is a comprehensive metric of precision
and recall. Meng has the second best performance, followed
by Shen. Nevertheless, Fornaciari attains the unsatisfactory
F-measure and is lower than Jia. The detection speed of our
method is also fast enough, and is comparable to the fastest
one. We present several detection results of the four real-
world datasets in Fig. 7. The first two rows of Fig. 7 show that
our method can successfully detect ellipses which are similar
or close to each other, while the last two rows of Fig. 7 show
that our method is robust against images with skew perspec-
tives and cluttered textures on the background or the objects.
Concentric structure. We also test the proposed method on
images with multiple concentric ellipses to verify the effect of
arc grouping. We collect a number of images that have con-
centric ellipse structure, as illustrated in Fig. 8. The detection
results are reported in Table 1, where our method attains the
highest F-measure with the lowest runtime, whereby competi-
tors consumes more time.
Application to camera calibration. Thanks to the accurate
and fast detection of the proposed method, we also employ
it for camera calibration patterns, from which the camera in-
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Fig. 7. Detection samples of real-world images. Our
method has the most true positives without false detection.
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Fig. 8. Detection results with multiple concentric ellipses.
Our method has the most correct detections.

trinsic parameters can be solved by the detected elliptical cen-
ters. We use a 3D linear laser camera AT03LL020-400GM-
070 capturing 65 images with resolution 1, 920× 1, 080 from
different perspectives and light conditions. Despite the skew
perspectives and noise impact, our method still attains high-
precision localization, and the average detection time is 57.55
ms. We present detection samples in Fig. 9, and more results
are reported in the supplemental material.

Fig. 9. Application to camera calibration patterns. Our
method has high-precision localization under the influence of
skew perspectives and noise.

4. CONCLUSIONS

We presented a fast and accurate pipeline for elliptical primi-
tive detection in cluttered images. To combine arcs together,
we first propose new geometric constraints to judge the rel-
ative location and potential of two arcs that come from the
same ellipse. Then the arc relationships are encoded into a



disjoint-set forest, by which we generate all candidate ellipses
without omissions, especially for images with multiple con-
centric structure. We project the candidate ellipses to the orig-
inal images, and compare the gradient differences between
ellipses and image pixels, to further validate the detection.
Experimental results on synthetic occlusion and real-world
images demonstrate the salient advantages of the proposed
approach in both accuracy and efficiency. Benefit from our
fast implementation, in the future, we will apply the proposed
detector to real-time elliptical object tracking.
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