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Robust Ellipse Fitting Using Hierarchical
Gaussian Mixture Models

Mingyang Zhao, Xiaohong Jia, Lubin Fan, Yuan Liang, and Dong-Ming Yan

Abstract—Fitting ellipses from unrecognized data is a fundamental problem in computer vision and pattern recognition. Classic
least-squares based methods are sensitive to outliers. To address this problem, in this paper, we present a novel and effective method
called hierarchical Gaussian mixture models (HGMM) for ellipse fitting in noisy, outliers-contained, and occluded settings on the basis
of Gaussian mixture models (GMM). This method is crafted into two layers to significantly improve its fitting accuracy and robustness
for data containing outliers/noise and has been proven to effectively narrow down the iterative interval of the kernel bandwidth, thereby
speeding up ellipse fitting. Extensive experiments are conducted on synthetic data including substantial outliers (up to 60%) and strong
noise (up to 200%) as well as on real images including complex benchmark images with heavy occlusion and images from versatile
applications. We compare our results with those of representative state-of-the-art methods and demonstrate that our proposed method
has several salient advantages, such as its high robustness against outliers and noise, high fitting accuracy, and improved performance.

Index Terms—ellipse fitting, GMM, HGMM, RANSAC, outlier, noise, robust statistic

F

1 INTRODUCTION

As one of the most common conics, an ellipse repre-
sents the perspective projection of a 3D circle that appears
in numerous shapes. Therefore, recognizing ellipses from
unrecognized data points has a rich history in computer
vision and pattern recognition. This problem is particularly
important due to its large number of applications in various
fields, such as classic computer vision scenarios (including
pose estimation [1], [2], camera calibration [3], [4], and
face detection [5], [6]) and interdisciplinary areas (including
pupil detection for eye tracking [7], [8], touching cell seg-
mentation for biomedical image processing [9], [10], [11],
fetal head measurement [12] and cardiovascular disease
diagnosis [13]).

Many studies have explored ellipse fitting over the past
several decades by applying two approaches, namely, least-
squares (LS) based methods and voting or sampling (VS) based
methods of which LS-based methods, including algebraic
and geometric fitting, are the most used. These methods
usually work well for clean or simple instances but are
highly sensitive to outliers that commonly emerge in prac-
tice. Compared with LS-based methods, VS-based methods
are more robust against outliers. Some representative VS-
based methods include the Hough transform (HT) [14] and
random sample consensus (RANSAC) [15] approaches. How-
ever, HT has a relatively large computational cost and stor-
age requirements for the 5D parameter space of an ellipse
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and is sensitive to the quantization of parameter bins. HT-
based methods may even mistakenly fit or miss true ellipses
if the quantization is inappropriate. Meanwhile, RANSAC
requires multiple iterations to find the optimal solution, but
its results cannot be guaranteed to be the same for each
time under outlier scenes. Moreover, with the increasing
number of outliers, both HT and RANSAC tend to report
false ellipses.

To improve the robustness of ellipse fitting, in this work,
we propose a novel method called hierarchical Gaussian
mixture models (HGMM) that fits ellipses from a set of noisy
2D points containing substantial outliers. Our approach is
inspired by previous works on point set registration [16] and
ellipse detection [17] that use GMM, which has been proven
robust for point set registration tasks by minimizing the L2

norm between two distributions built by two GMMs [16].
Arellano et al. [17] adopt the GMM framework for ellipse
detection but find that this method is vulnerable to outliers
given that the direct transplanting of the L2 metric cannot
distinguish the outliers and inliers effectively, thereby re-
ducing accuracy.

The hierarchical structure of the proposed HGMM is
crafted into two layers. First, the outer layer estimates
reasonable initial parameters. To this end, a density-based
region growing strategy is devised, which effectively cir-
cumvents manual deviations or randomness for the initial
value setting. Unlike GMM that solely relies on the L2 norm,
we combine distance and density together to create an error
metric that is more robust against outliers. Second, on the
basis of the results from the outer layer, the inner layer
is applied to the whole data to generate the final ellipse.
We show that such a hierarchical structure significantly
improves the robustness, stability, and accuracy of the GMM
framework. The iterative interval of the kernel bandwidth is
also narrowed down to enhance the efficiency of the fitting
process. The main contributions of this paper are as follows:
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• A novel ellipse fitting method with remarkable ro-
bustness against outliers and noise is proposed, and
the iterative interval of the kernel bandwidth is nar-
rowed down.

• A reliable error metric that jointly considers distance
and density instead of merely depending on the L2

norm is introduced.
• The analytical gradients of the objective function are

derived to accelerate and stabilize the optimization
process.

2 RELATED WORK

In this section, we present the formal definition of ellipse
fitting and briefly review the most relevant methods related
to our approach. The reader can refer to [18] for a compre-
hensive study of ellipse fitting.

2.1 Ellipse fitting

Definition 1 A conic in 2D Euclidean space is defined by the
following implicit second-order polynomial equation:

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0. (1)

Alternatively, this conic can be expressed in a vector form
ΘTv, where

Θ = [A B C D E F ]T ,

v = [x2 2xy y2 2x 2y 1]T .

Equation (1) describes an ellipse if its discriminant

B2 −AC < 0. (2)

Given a set of points C = {(xi, yi) ∈ R2}ni=1 that are sam-
pled on a potential ellipse, possibly with noise or outliers,
the goal of ellipse fitting is to extract the ellipse from the
points. The existing methods can be generally classified into
two those that rely on the least-squares (LS) principle and
those that depend on the voting or sampling (VS) technique.

2.2 Least-squares based methods

LS-based methods aim to solve for the optimal ellipse
parameters by minimizing the sum of squared distance
between the data points and the ellipse model. Typically, the
algebraic and geometric distances are invoked to measure
the fitting deviations in a process also known as algebraic
and geometric fitting. On the one hand, algebraic fitting
aims to minimize

J(Θ) =
n∑
i=1

‖ΘTvi‖2 =
n∑
i=1

ΘTvivi
TΘ = ΘTVTVΘ, (3)

where vi = v(xi, yi) = [x2i 2xiyi y2i 2xi 2yi 1]T is
the point vector computed from the input data (xi, yi), and
V = [v1 v2 ... vn]T is the design matrix constructed
from {vi}ni=1. To avoid scale indeterminacy and trivial so-
lutions, various normalization schemes have been investi-
gated in the past, including

F = 1, A+ C = 1,

‖ Θ ‖2= 1, AC −B2 = 1.
(4)

However, the first three constraints are not ellipse specific,
that is, the fitting results may not be an ellipse especially
when plenty of outliers exist. Meanwhile, the last constraint,
which is proposed by Fitzgibbon et al. [19], is ellipse specific
and transforms the fitting problem into a generalized eigen-
value system. This approach has since then been called direct
least square fitting (DLSF). Since its non-iterative and ellipse
specific properties, DLSF has been widely used afterwards.
Although algebraic fitting methods are computational effi-
cient, they are sensitive to outliers.

Unlike algebraic fitting, geometric fitting estimates el-
lipses by minimizing the sum of squared orthogonal dis-
tance di from the observed points (xi, yi) to the ellipse [18]:

S =
n∑
i=1

((xi − x̂i)2 + (yi − ŷi)2) =
n∑
i=1

d2i , (5)

where (x̂i, ŷi) is the point on the ellipse closest to (xi, yi).
Compared with algebraic fitting, geometric fitting has
higher accuracy but requires iterative optimization due to
the nonlinear nature of the distance computation. For in-
stance, Ahn et al. [20] adopt a direct approach of minimiz-
ing the orthogonal distance through iterations. To improve
efficiency, several approximations for the exact geometric
distance have been proposed, such as the first-order distance
approximation (i.e., Sampson distance) [21], [22]. Meanwhile,
Taubin [23] calculates the gradient of Eq. (1) and transforms
the fitting problem as a generalized eigenvalue system. In
this way, this approach can also be regarded as an algebraic
fitting. However, if the data are corrupted by partial outliers,
then this approach may return non-elliptic conics. Prasad
et al. [24] propose an unconstrained, non-iterative, and LS-
based geometric method. However, this method is only
suitable for data points that belong to an ellipse. Wu et
al. [25] recently propose a novel Polar-N-Direction distance
that is derived from analyzing the Sampson distance. Never-
theless, the above methods are not suitable for ellipse fitting
when a certain number of outliers exists. Moreover, given
that geometric fitting involves a non-linear optimization,
this process usually requires proper initial guesses and
tends to be stuck in the local minima.

According to the Gauss-Markov theorem [26], LS is the
best linear unbiased estimator, yet is susceptible to outliers.
Therefore, neither algebraic fitting nor geometric fitting can
provide reliable results when the data are contaminated by
outliers. Least median squares (LMS) [27] is later proposed to
improve the robustness of LS. The motivation behind this
approach is that the optimal solution should embrace the
lowest median of squared residuals.

2.3 Voting or sampling based methods
VS-based methods usually indicate HT [14], [28] and
RANSAC [15], [29]. The principle of HT is to perform
voting for each point in a 5D parameter space, and the local
maxima in the accumulator are selected out as candidate
ellipses. However, this method requires large storage and
has a high computational complexity, which is computed
as O(N5) [30], where N is the quantized space for each
elliptic parameter. To relieve this issue, multiple variants
such as probabilistic HT [31], hierarchical HT [32], random-
ized HT [33], and iterative randomized HT [34], have been
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proposed. These variants are collectively referred to as the
Hough family.

RANSAC adopts an iterative sampling technique. In
each iteration, at least five points are randomly sampled,
and then the unknown parameters of an ellipse are solved
from these points. However, RANSAC is sensitive to the
error bound setting of inliers. In addition, when input data
are corrupted by a large portion of outliers, the sampling
process needs substantial repetitions and the results cannot
be guaranteed equally for each time. Let the outlier percent-
age among the input data is w, and the probability that at
least once the sampled n = 5 points are all from the ground
truth ellipse is p, then the required sampling number N is
equal to

N =
log(1− p)

log(1− (1− w)n)
.

For instances, if w = 0.6, p = 0.98, then N = 380, and
if w = 0.8, then N = 12, 223 is large enough. Moreover,
we have no prior of w. Some variants of RANSAC include
maximum likelihood estimation consensus (MLESAC) [35],
guided-MLESAC [36], and genetic algorithm sample con-
sensus (GASAC) [37].

2.4 Other methods

Apart from the above representative methods, many other
approaches that depend on different principles are also
available. For instance, some of these methods explore the
various geometric properties of an ellipse [38], [39] or rely
on maximum likelihood and entropy [40], [41]. Innova-
tion sampling [42], sparse combination [43], and heuristic
optimization [44], [45] have also been explored for their
application in ellipse fitting. However, these methods ei-
ther ignore the interference of outliers or are incompetent
against outliers. Recently, [46] introduces a deep-learning-
based method called Ellipse-RCNN, subject to the training
datasets, it merely targets for specific objects.

The generalized GMM framework proposed by Arellano
et al. [17] for ellipse detection is initially used by Jian
and Vemuri [16] to perform point set registration. Specif-
ically, they optimize the registration process based on the
L2 norm between two probability distributions. However,
directly porting the L2 norm as the optimal error metric
for ellipse fitting is not suitable, because this approach
is also susceptible to outliers. To address this issue, we
propose a novel distance-density-based error metric that
jointly considers the distance and density deviations. We
also devise a hierarchical GMM constituted by two layers.
Through a density-based region growing step, the outer
layer effectively eliminates the initial randomness caused by
handcraft. Afterward, the inner layer is applied to the whole
data containing outliers to determine the true ellipses. Given
the hierarchical structure of this framework, we not only
intensively improve its robustness against outliers, but also
narrow down the iterative interval of the kernel bandwidth,
thereby reducing the computation time and accelerating the
fitting process.

3 GMM FOR ELLIPSE FITTING

Our method adopts a hierarchical structure that takes GMM
as the main ingredient. To make the paper self-contained,
we initially review the GMM framework proposed by [17].
GMM is a special case of the non-parametric probability
density estimation in the kernel method that is used to
approximate the data from an unknown distribution. For
instance, given a 2D point set C = {xj ∈ R2}nj=1, the
following probability density function is built:

p(x) =
1

n

n∑
j=1

Kh(x− xj), (6)

where Kh(x − xj) is the kernel function with the (kernel)
bandwidth equal to h. p(x) is a Gaussian mixture model
if Kh(x − xj) is equal to the following Gaussian kernel
N(x;µ,Σ) defined as

N(x;µ,Σ) =
1

2π‖Σ‖1/2
exp{−1

2
(x−µ)TΣ−1(x−µ)},

where µ is a 2-dimensional mean vector, Σ is a 2 × 2
covariance matrix, and ‖Σ‖ is the determinant of Σ. For
the given point set C , the data model f(x) is defined as

f(x) =
1

n

n∑
j=1

N(x; xj , h
2I), (7)

where I is a 2× 2 identity matrix.
Suppose that we want to fit the given point set by an

ellipse with parameter θ = (x0, y0, a, b, γ), where (x0, y0) is
the ellipse center, a, b are the semi-axis length, and γ is the
rotational angle with respect to the horizontal axis. Then on
the target ellipse, we sample m points {ui ∈ R2}mi=1 which
are defined as

ui =

(
cos γ − sin γ
sin γ cos γ

)(
a cos τi
b sin τi

)
+

(
x0
y0

)
, (8)

with τ evenly sampled from [0, 2π). Then the ellipse model
g(x|θ) for the target ellipse is built as

g(x|θ) =
m∑
i=1

wiN(x;µi,Σi), (9)

where the mean µi and covariance matrix Σi are defined as

µi =
ui + ui+1

2
,Σi = QT

i ΛiQi.

Qi = [n1i|n2i] is composed of two orthogonal unit vectors
n1i and n2i,

n2i = ui−ui+1

||ui−ui+1||2 = [n2i(x), n2i(y)]T ,

n1i = Rn2i = [−n2i(y), n2i(x)]T .

R =

(
cosα − sinα
sinα cosα

)
is the rotation matrix with the

angle α = π/2. n1i and n2i can be seen as approximations
of the normal and tangent vectors of the ellipse at point µi.
Λi is a diagonal matrix(

h2 0
0 h2i

)
,

with hi = ||ui − ui+1||2. The weights wi of g(x|θ) satisfy

1 =

∫ +∞

−∞
g(x|θ)dx =

m∑
i=1

wi

∫ +∞

−∞
N(x;µi,Σi)dx =

m∑
i=1

wi,
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Fig. 1. Perspective visualization and bird’s-eye view of the ellipse model
g(x|θ).
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Fig. 2. Left: The elliptic data are contaminated by outliers. Right: The
fitting results obtained by GMM and the proposed method.

and are set as hi∑m
i=1 hi

. To capture the shape of an ellipse,
the number m in g(x|θ) is set to 20 [17]. An illustration of
the ellipse model g(x|θ) is presented in Fig 1.

The difference between f(x) and g(x|θ) is evaluated by

L2(θ) = ‖f(x)− g(x|θ)‖2. (10)

Therefore, the optimal ellipse parameter θ is acquired at

θ̂ = arg min
θ

‖f(x)− g(x|θ)‖2. (11)

Eq. (10) can be rewritten as

‖f(x)−g(x|θ)‖22 =‖f(x)‖22+‖g(x|θ)‖22−2<f(x)|g(x|θ)>,

based on the inner product of Gaussian distributions,

< N(µ1,Σ1)|N(µ2,Σ2) >= N(0;µ1 − µ2,Σ1 + Σ2),

we obtain

‖g(x|θ)‖22 =
m∑
i=1

m∑
k=1

wiwkN(0;µi − µk,Σi + Σk),

and

< f(x)|g(x|θ) >=
1

n

n∑
j=1

m∑
i=1

wiN(0; xj − µi, h2I + Σi).

For the point set registration problem, Eq. (10) evaluates the
discrepancy between the two distributions through the L2

norm. However, for ellipse fitting, when the input data set
is contaminated by substantial outliers, there exists major
differences between the clean ellipse model g(x|θ) and the
data model f(x). Thereby, merely relying on the L2 norm
is not sufficient to get the correct ellipses. As is presented
in Fig. 2, the result ellipse by GMM is far away from the
correct one. To tackle this problem, we propose the method
HGMM in the following sections.

Algorithm 1 Distance-density-based ellipse fitting

Input: Point set C , Initial ellipse parameter θ(0), Iterative
interval of bandwidth [hmax, hmin], Inlier threshold T .

Output: Optimal ellipse parameter θ̂.
1: Initialize h← hmax, θ̂ ← θ(0), and E ←∞;
2: Construct the ellipse model g(x|θ) and data model f(x);
3: Calculate f(xi) for each point xi ∈ C ;
4: while h ≥ hmin do
5: θ̂ ← arg minθ ‖f(x)− g(x|θ)‖2;
6: if E(θ̂) < E then
7: E ← E(θ̂);
8: θ̂ ← θ̂;
9: end if

10: h← 0.8× h;
11: end while
12: Output θ̂;

4 DISTANCE-DENSITY-BASED ERROR METRIC

Before presenting the whole HGMM framework, we pro-
pose a novel metric that combines the distance and density
for deciding the optimal ellipse apart from evaluating the
L2 norm. The proposed distance-density-based error metric
follows two criteria [30]:

(1) The data points on or near the model (inliers) should
be as many as possible, and

(2) the residual of inliers should be as small as possible.

Definition 2 Given a point set C = {xj ∈ R2}nj=1 and an
ellipse with parameter θ, the proposed error metric is

E(θ) =

∑n
j=1 dθ(xj)

exp{
∑n
j 1(d2j < T 2)f(xj)}

, (12)

where dθ(xj) is the distance from the select points xj to the ellipse
θ (using θ to represent the ellipse)

dθ(xj) =

{
d2j , d2j < T 2

+∞, d2j ≥ T 2,

and 1 : R → {0, 1} is the indicator function, and T is the inlier
threshold.

Given the lack of an explicit point-to-ellipse distance
formula1, we adopt the following approximate formula [47]
that holds for canonical ellipses (centered at the origin and
aligned with the axes) for the distance computation:

dj =

 r(1−
√

(xj/a)2 + (yj/b)2), xj is inside θ√
x2j + y2j (1− 1√

(xj/a)2+(yj/b)2
), xj is outside θ

where r = min(a, b). We transform the fitted ellipse θ into a
canonical form to utilize this formula.
Remark. The optimal ellipse solution θ̂ is acquired at the minimal
of E(θ).

Minimizing Eq. (12) requires its numerator, which char-
acterizes Criterion (2) on the total distance of inliers, to be

1. Calculating the exact Euclidean distance from a point to an ellipse
requires solving a quartic equation. Additional details on the exact
computation and approximate computation of [47] are presented in the
supplemental material.
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Fig. 3. Top: The pipeline of the proposed robust ellipse fitting method.
Bottom: Illustrative description of the proposed method. (a) Input data.
(b) The growing region based on the density and distance computation.
(c) The ellipse fitted by the outer layer. (d) The ellipse fitted by the inner
layer.

the smallest and requires its denominator, which character-
izes Criterion (1) on the total density of inliers, to be the
largest. Therefore, the whole effect of Eq. (12) is to force the
fitting tending to inliers thus the minimal E(θ) corresponds
to the optimal ellipse solution θ̂.

In practice, we adopt a simulated annealing method
by changing the h provided by users in Eq. (11) from its
maximum to minimum to solve for the optimal solution θ̂.

Definition 3 The iterative interval of the bandwidth is defined
as [hmax, hmin], which descends from the maximum hmax to
the minimum hmin. In the iterative process, the same geometric
iteration rate β = 0.8 is utilized.

Under each bandwidth, the gradient descent algorithm
with the analytical gradient provided in the supplemental
material is used to minimize L2(θ). The proposed algorithm
is presented in Algorithm 1.

5 HGMM FOR ELLIPSE FITTING

In this section, we present the complete HGMM framework
as shown in Fig. 3, along with an illustrative description.
Given that the initial value θ(0) plays a key role in deter-
mining the correct ellipses, we create a hierarchical structure
containing two layers to address this problem. Under each
layer, we search for a proper initial value for θ(0) prior
to fitting. Generally speaking, for the input data given in
Fig. 3(a), we first adopt region growing strategy combining
point density and neighborhood distance together to decide
the initial value for the outer fitting, as shown in Fig. 3(b).
Then the outer fitting is implemented for the growing region
to attain the first ellipse, which is presented in Fig. 3(c).
Based on the outer fitting result, the inner fitting is applied
to the entire data involving outliers to further improve the
fitting accuracy. The final ellipse in Fig. 3(d) shows that
our proposed method is robust against outliers. Detailed
descriptions are presented in the following sections.

5.1 Density-based region growing method

Based on the observation that the points on or near ellipses
have higher and comparable density than the outliers, we
devise a density-based region growing strategy to remove
the outliers. Specifically, for the given input point set C =
{xi ∈ R2}ni=1, such as the case in Fig. 3(a), we calculate the

density ρ(xi) for each point xi by letting x = xi in the data
model f(x), and choose the point with the largest density
ρ0 = maxni=1 ρ(xi) as the initial point x0 of the growing
region R. Afterward, we rely on the following definition to
expand R:

Definition 4 A point xi ∈ C can be grouped into the neighbor-
hood of x0, that is, NEps(x0), if it lies within the sphere Sε(x0)
and has a comparable density with ρ0:

NEps(x0) = {xi ∈ C| ‖ xi − x0 ‖2≤ ε ∩
ρ(xi)

ρ0
≥ τ},

where τ is the density tolerance with respect to ρ0 and is typically
fixed to 0.6.

Afterward, we add NEps(x0) to R and update the start
point x0 by one of the farthest points in NEps(x0) from x0,
along with the update of ρ0. This process is repeated until
the point number |R| reaches the given threshold N . If |R|
fails to reach N , then R is seen as outliers and is removed
from C . For the input data in Fig. 3(a), its growing region is
presented in Fig. 3(b).

Algorithm 2 HGMM for ellipse fitting
Input: Point set C , Point number in growing region N ,

Neighborhood radius ε, Iterative interval of bandwidth
in outer and inner fitting [hmaxo, hmino], [hmaxi, hmini],
Inlier threshold T .

Output: Optimal ellipse parameter θ̂.
1: Calculate ρ(xi) for each point xi ∈ C by f(x);
2: Find the point x0 ∈ C with the maximal density ρ0;
3: R← ∅, flag← true;
4: while flag do . density-based region growing
5: NEps(x0)← {xi ∈ C| ‖ xi−x0 ‖2≤ ε∩ ρ(xi)

ρ0
≥ 0.6};

6: R← R ∪NEps(x0);
7: Remove NEps(x0) from C ;
8: x0 ← max

xi∈NEps(x0)
‖ xi − x0 ‖2, ρ0 ← f(x0);

9: if NEps(x0) is empty then
10: flag← false;
11: Remove R from C ;
12: else if |R| ≥ N then . fitting in outer layer
13: flag← false;
14: Initialize (x0, y0) by the center of R;
15: Initialize θ(0) ← (x0, y0, 1, 1, 0);
16: Estimate θ(1) by Alg. 1 using (R, hmaxo,

hmino,θ
(0), T );

17: Calculate the aspect ratio e of θ(1);
18: if e < 1

5 then . inner layer
19: θ(1) = (θ(1)(1),θ(1)(2), 1, 1, 0);
20: end if
21: Estimate θ̂ by Alg. 1 using (C, hmaxi,

hmini,θ
(1), T );

22: else continue;
23: end if
24: end while
25: Output θ̂;

5.2 Fitting in the outer and inner layers
For the valid region R, we utilize Algorithm 1 to fit the
points in R with the initial value θ(0) = (x0, y0, 1, 1, 0).
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Fig. 4. Ellipse fitting comparisons between GMM and the proposed method. The first to third rows show the cases of pseudo-outliers, random
outliers, and two ellipses. The last column shows the corresponding L2 error of GMM for the first column. Our distance-density-based method
successfully fits all correct ellipses.

Here, (x0, y0) is the average of all points in R. This process
is the outer fitting step, and the corresponding fitting result
is presented in Fig. 3(c). After obtaining θ(1) from the
outer layer, the inner layer (i.e., Algorithm 1) is rerun by
taking θ(1) as its initial value for the whole point set C
containing outliers to authentically determine the correct
ellipse. The inner fitting result is presented in Fig. 3(d),
which successfully fits the true ellipse. The iterative inter-
vals of bandwidth in the outer and inner layers are set as
[hmaxo, hmino] and [hmaxi, hmini], respectively. The above
procedures are summarized in Algorithm 2.

Given that most points in R come from the true ellipse,
reasonable initial values can be provided for the outer layer,
thereby guaranteeing the optimal θ(1) that subsequently
becomes the initial value for the inner layer. Based on
θ(1), the final ellipse is determined through a very narrow
bandwidth. Owing to its hierarchical structure, compared
with GMM, the iterative interval of bandwidth is effectively
narrowed down, thereby accelerating the fitting process.

6 EXPERIMENTAL EVALUATION AND DISCUSSIONS

In this section, extensive experiments that utilize synthetic
data and real-world images are conducted to demonstrate
the accuracy and robustness of the proposed method com-
pared with the representative state-of-the-art methods. All
experiments are conducted with Matlab R2014b on a PC
with 4GB RAM and a 3.6 GHz Intel CPU.

6.1 Comparison with GMM

To verify the effectiveness of the proposed metric E(θ) (Sec-
tion 4), we compare our algorithm (Algorithm 1) with the
primary GMM-based ellipse fitting [17] by conducting three

experiments (i.e., pseudo-outliers, outliers, and two ellipses).
For each experiment, three different cases are tested to attain
representative results as shown in Fig. 4. For the sake of
fairness, Algorithm 1 and GMM share the same parameter
settings and bandwidth interval (i.e., h ∈ [0.9, 0.2]) in all
tests.

For the pseudo-outliers case, a complete ellipse is ran-
domly generated and associated with a quarter ellipse at
different locations to simulate various interferences. The
initial guess θ(0) for both methods is equal to (x0, y0, 1, 1, 0),
where (x0, y0) is the center of the complete ellipse. The
fitting results are presented in Fig. 4(a). We can see from
the figure that GMM is affected by pseudo-outliers and
loses three correct ellipses. To illustrate the optimization
process of GMM, we also report the L2 iterative error
in the fourth column for the first case. We observe that
the optimal ellipse θ̂ of GMM is obtained when h = 0.9
with a minimal L2 error of 1.5586 × 10−3. However, the
correct ellipse is fitted at h = 0.24 with an L2 error of
1.64 × 10−2, thereby suggesting that the minimal L2 error
does not correspond to the optimal ellipse under the exis-
tence of pseudo-outliers. By contrast, our distance-density-
based method successfully fits three correct ellipses under
different interferences. Therefore, our proposed metric is
more robust against pseudo-outliers compared with GMM.

In the second test, we contaminate the ellipse by 15
random outliers from a Gaussian distribution with zero
mean and standard deviations (σ): 5%, 100%, and 150%, as
shown in Fig. 4(b). As observed, the ellipses fitted by GMM
under the minimal L2 error deviate from the correct ellipses,
yet our distance-density-based method fits all the ellipses.
The last experiment is conducted to simulate the multiple
ellipse detection by using two intersecting ellipses as shown
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in Fig. 4(c). Although the initial location provided for GMM
has been designated as one of the true ellipses for the first
two cases, GMM still misses the correct ellipses. By contrast,
our method successfully fits one of the correct ellipses. It
is also interesting to see what will happen if two same
ellipses are available. Therefore, we generate a symmetric
configuration of two ellipses as shown in the third image
and set the initial location (x0, y0) at the symmetric center
(0, 0). Note that our method still performs well and fits
one of the correct ellipses. Meanwhile, GMM, which is only
based on the L2 norm, generates major deviations.

Experimental results indicate that under the outlier con-
tamination, merely relying on theL2 metric for ellipse fitting
is not sufficient or reliable because the data distribution f(x)
greatly changes compared with the ellipse model g(x|θ).
By reconsidering the model fitting criteria and designing
a novel error metric, our method successfully fits all the
correct ellipses.

6.2 Quantitative evaluations
To comprehensively assess its accuracy and robustness, we
compare our proposed method with eight representative or
recently proposed ellipse fitting methods from three cate-
gories, including DLSF [19], Taubin [23], Ahn [20], Prasad
[24], Wu [25], RANSAC [15], LMS [27], and GMM [17],
among which DLSF and Taubin are algebraic fitting meth-
ods, Ahn, Prasad, and Wu are geometric fitting methods,
and RANSAC, LMS, and GMM are robust methods. To
quantitatively evaluate the performance of these algorithms,
we measure the ellipse parameters (the center (x0, y0), the
length of semi-axis a and b, and the rotation angle γ) by the
following criteria:

AD(x̂0, ŷ0) = 1
s

∑s
i=1

√
(x̂i − x0)2 + (ŷi − y0)2,

A(â) = 1
s

∑s
i=1 âi,A(b̂) = 1

s

∑s
i=1 b̂i,A(γ̂) = 1

s

∑s
i=1 γ̂i.

where (x̂i, ŷi, âi, b̂i, γ̂i) is the estimated elliptic parameter
for the ith fitting, and s is the fitting times.

6.3 Numerical experiments
6.3.1 Implementation details
We first discuss the parameters used in the following ex-
periments. For the proposed method, the iterative interval
of the bandwidth is set as [hmaxo, hmino] = [4, 3] and
[hmaxi, hmini] = [0.9, 0.7] with β = 0.8. For the neigh-
borhood radius ε, to capture more inliers, we set ε = 10
in all experiments. For the inlier tolerance T , to depress
noise influence, we equate it to three. The last parameter
N controlling the point number in the growing region is
related to the inlier percentage. When the portion of outliers
is small, a small N is adequate, while for heavy outliers,
we can choose a slightly larger N to ensure better perfor-
mance. In practice, we leave N as a parameter that can be
freely tuned by users. For the primary GMM, we adopt the
parameters used in [17] and set [hmax, hmin] = [0.9, 0.2]
with β = 0.8 in all experiments. Compared with that
in GMM, the iterative interval of the bandwidth in our
method has been significantly narrowed down. Neverthe-
less, experiments show that our method is more robust

against outliers and attains more accurate fitting results than
GMM. Meanwhile, the parameters of other robust methods
are set following the suggestions of previous authors. For
instance, the maximum iteration number of RANSAC is set
to 5000 and its corresponding inlier distance is equal to√

0.38
√
2

1
n

∑n
j=1

√
x2
j+y

2
j

, where {(xj , yj) ∈ R2}nj=1 is the input

point set. For LMS, the iterative number is set to n
15 .

6.3.2 Noise and occlusion disturbance

We first evaluate the performance of different methods in
terms of noise. First of all, we add Gaussian noise with zero
mean and σ ∈ {10%, 50%, 100%, 150%, 180%, 200%} to a
randomly generated ellipse (0, 0, 15, 20, π4 ) containing 120
points, besides, we add 10% outliers to the ellipse. Under
each noise level σ, we implement s = 200 fittings to attain
the statistically representative results.

The fitting results are reported in Tables 1 and 2. Ta-
ble 1 shows that the overall algebraic and geometric fitting
methods have a more stable center deviation AD(x̂0, ŷ0)
than the robust methods. However, our method achieves a
lower AD(x̂0, ŷ0) than others under different noise levels,
thereby indicating that it has the most precise location
estimation. Both RANSAC and LMS tend to produce large
center deviations with increasing noise, whereas GMM has
the worst deviations that are more than 100 times larger than
our method even at σ = 10%. In terms of the rotation angle,
except for Prasad and LMS, all methods report reliable
estimations. Moreover, RANSAC and our method attain the
best estimation with our method showing better stability
than RANSAC. The semi-axis estimation reported in Table 2
suggests that Ahn and Wu return a semi-minor axis that is
much lower than the ground truth, whereas GMM returns a
much larger semi-major axis. By contrast, the other methods
report a preferable accuracy with sub-pixel deviations.

To get more insights, we further calculate the mean
squared error MSE(ξ̂) = 1

s

∑s
i=1(ξ̂i − ξ̄)2 for the estimated

parameter ξ̂i (i.e., (x̂i, ŷi), âi, b̂i, γ̂i), where ξ̄ represents the
average. The MSE of each method is presented in Fig. 5.
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Fig. 5. MSE of different methods under different noise levels (%). (a)
Center deviation; (b) angle deviation; (c) minor semi-axis deviation; and
(d) major semi-axis deviation.
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Fitting results of the center and rotation angle under different noise levels (%).

Methods AD(x̂0, ŷ0) A(γ̂)

10 50 100 150 180 200 10 50 100 150 180 200

Algebraic DLSF [19] 0.572 0.579 0.596 0.622 0.641 0.655 0.78 0.781 0.782 0.791 0.792 0.793
Taubin [23] 0.596 0.604 0.624 0.656 0.680 0.698 0.792 0.793 0.795 0.789 0.794 0.798

Geometric Ahn [20] 0.624 0.624 0.641 0.676 0.697 0.712 0.847 0.786 0.789 0.79 0.79 0.79
Prasad [24] 0.623 0.632 0.657 0.697 0.727 0.751 1.052 1.059 1.076 1.103 1.121 1.134
Wu [25] 0.747 0.743 0.763 0.787 0.805 0.820 0.782 0.782 0.785 0.789 0.79 0.791

Robust RANSAC [15] 0.258 0.282 0.327 0.414 0.511 1.112 0.784 0.783 0.782 0.781 0.782 0.787
LMS [27] 0.521 0.549 0.751 0.935 1.113 1.083 0.726 0.723 0.686 0.664 0.653 0.639
GMM [17] 5.961 4.718 5.5 5.212 6.747 7.022 0.792 0.773 0.786 0.782 0.82 0.768
HGMM(Ours) 0.021 0.085 0.276 0.408 0.524 0.637 0.785 0.786 0.786 0.789 0.789 0.789

TABLE 2
Fitting results of the semi-axis length under different noise levels (%).

Methods A(â) A(b̂)

10 50 100 150 180 200 10 50 100 150 180 200

Algebraic DLSF [19] 14.877 14.898 14.954 15.044 15.112 15.163 19.116 19.116 19.125 19.148 19.17 19.188
Taubin [23] 14.514 14.525 14.552 14.593 14.623 14.645 19.698 19.71 19.764 19.862 19.944 20.01

Geometric Ahn [20] 13.62 13.62 13.623 13.626 13.628 13.629 20.363 20.373 20.419 20.509 20.583 20.643
Prasad [24] 14.26 14.26 14.254 14.24 14.227 14.217 20.477 20.527 20.692 20.979 21.217 21.405
Wu [25] 13.738 13.74 13.752 13.759 13.762 13.765 19.971 19.983 20.017 20.096 20.16 20.211

Robust RANSAC [15] 15.089 15.132 15.188 15.26 15.341 15.728 19.856 19.854 19.857 19.825 19.808 19.746
LMS [27] 14.673 14.582 14.66 14.649 14.739 14.672 19.872 19.818 20.012 20.11 20.179 20.066
GMM [17] 17.977 15.93 16.827 14.879 15.748 15.172 25.143 24.081 23.481 20.28 21.062 21.14
HGMM(Ours) 14.776 14.762 14.672 14.675 14.697 14.689 19.807 19.784 19.695 19.709 19.714 19.772
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Fig. 6. Comparison of different methods in terms of noise. (a) Input data with σ = 200%. (b)-(d) Fitting results attained by algebraic, geometric, and
robust methods, respectively.

From which, we can see that GMM has the largest errors
for all parameter estimations. Although algebraic fitting and
geometric fitting keep more stable than RANSAC and ours,
they have much more deviations. Compared with RANSAC,
our method is of a little fluctuation, but it still lies in the
quite small error scope. A comparison example is presented
in Fig. 6.

After the noise test, we remove quarter of the ellipse
and set σ = 50% to evaluate the fitting performance of
different methods under occlusion. The result is reported
in Table 3. Our method still has the lowest center deviation
among all methods, and both of its semi-axis and rotation
angle are very close to the optimal solution. Meanwhile, the
LS-based methods produce more center deviations than the
robust methods and, except for Taubin, report major angle
deviations. LMS also reports evident angle deviations.

TABLE 3
Fitting results of different methods under occlusion.

Methods AD(x̂0, ŷ0) A(â) A(b̂) A(γ̂)

Algebaric DLSF [19] 1.035 14.746 19.280 0.684
Taubin [23] 1.329 14.697 20.430 0.783

Geometric Ahn [20] 1.445 13.911 20.362 0.681
Prasad [24] 1.693 14.961 21.711 0.997
Wu [25] 1.229 13.969 19.818 0.676

Robust RANSAC [15] 0.707 15.203 19.719 0.783
LMS [27] 0.791 14.539 19.652 0.684
GMM [17] 0.217 14.717 19.748 0.788
HGMM(Ours) 0.147 14.756 19.812 0.793

6.3.3 Outlier disturbance

Apart from noise tests, we further conduct experiments to
evaluate the robustness of our proposed method against
outliers. Given that LS-based methods are sensitive to out-
liers, only four robust methods are compared in this experi-
ment. For the previous ellipse (0, 0, 15, 20, π4 ) containing 120
points with σ = 50%, we gradually add outliers from 20%
to 60%, and implement 200 tests under each outlier level.

The fitting results for different methods are reported in
Table 4. RANSAC and our method attain the smallest center
deviations, whereas LMS and GMM return large deviations.
In terms of rotation angle, except for LMS that obtains
large deviations, all the other methods achieve satisfactory
results. However, our proposed method achieves the best
estimation. For the minor semi-axis, as the outliers increase,
the estimation results of RANSAC and GMM tend to be
larger and show greater deviations than LMS and our
method. For the major semi-axis, LMS reports significant
deviations as the outliers increase. Therefore, LMS and
GMM may not report reliable results when partial outliers
are available. By contrast, RANSAC and our method are
highly robust against outliers and are capable of keeping
reliable estimations even at 60% outliers.

We further report the MSE for each method in Fig. 7.
The proposed method achieves the smallest MSE among
all robust methods. Specifically, our method keeps the 10−2
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TABLE 4

Fitting results of elliptic parameters under different outliers (%).

Methods AD(x̂0, ŷ0) A(γ̂) A(â) A(b̂)

20 30 40 50 60 20 30 40 50 60 20 30 40 50 60 20 30 40 50 60

RANSAC [15] 0.07 0.09 0.095 0.318 0.474 0.793 0.78 0.784 0.777 0.796 15.194 15.282 15.249 15.882 16.260 19.89 19.89 19.86 20.15 20.705
LMS [27] 0.681 1.402 1.568 1.679 3.877 0.544 0.527 0.489 0.574 0.546 15.361 15.364 15.094 15.126 14.553 23.841 29.055 32.957 36.09 53.159
GMM [17] 4.181 5.239 4.883 4.760 5.817 0.79 0.778 0.791 0.796 0.79 15.53 14.704 15.670 15.680 17.417 21.54 20.476 20.913 20.853 22.158
GMM+A1 0.087 0.258 0.212 0.429 0.814 0.787 0.776 0.785 0.779 0.774 14.738 14.609 14.773 14.889 14.79 19.765 21.681 19.891 19.884 19.945
SAREfit [48] 1.086 2.732 1.434 3.782 4.344 0.598 0.443 0.193 0.074 1.222 14.846 16.002 18.201 19.611 20.605 21.319 20.749 22.969 24.788 26.22
HGMM(Ours)-A1 0.842 1.214 0.526 0.75 0.924 0.783 0.796 0.792 0.795 0.784 22.494 15.22 14.529 15.049 14.875 27.482 20.507 20.04 20.275 20.45
HGMM(Ours) 0.08 0.087 0.135 0.04 0.54 0.786 0.786 0.782 0.783 0.786 14.76 14.769 14.741 14.801 14.658 19.78 19.78 19.75 19.80 19.617
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Fig. 7. MSE of different methods under different outliers (%). (a) Center
deviation; (b) angle deviation; (c) minor semi-axis deviation; and (d)
major semi-axis deviation.
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Fig. 8. Comparison of robust methods in terms of outliers. Left: Input
data points containing 60% outliers. Right: Fitting results attained by
different robust methods.

center deviation when the outliers are no greater than 50%
and keeps sub-pixel errors under 60% outliers. However,
both GMM and LMS report a 102 center deviation even at a
small number of outliers. RANSAC also returns large devia-
tions when the outliers exceed 40%. For angle deviation, our
method embraces the smallest MSE and keeps utmost stable.
Note that the MSE of RANSAC experiences a rapid growth
when the outliers exceed 30%. For semi-axis deviation, the
MSE scope of our method mainly lies in [10−2, 1], thereby
highlighting its strong robustness against outliers. Apart
from LMS and GMM that show large deviations for the
semi-axis, RANSAC also shows weakness to substantial
outliers. We present an example in Fig. 8.

We also report the average time consumption of the 200
implementations in Fig. 9. As observed, RANSAC has the
lowest time consumption, whereas GMM has the largest
time consumption. Given that the iterative interval of the
bandwidth in each layer has been narrowed down in our
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Fig. 9. Time comparison of robust methods under different outliers.

method, our running time is significantly shorter than that
of GMM, and remains highly stable under different outlier
levels. By contrast, with the outliers increasing, the time
consumption of LMS rapidly increases, thereby indicating
its numerous iterations.

Furthermore, we compare our algorithm to a latest
method called SAREfit [48] dedicated for outliers, in which
uniform sampling and L1 median techniques are adopted.
To be fair, we use the same parameter setting as the previous
outlier test. Its results are reported in Table 4. As observed,
SAREfit produces less center deviations than GMM, but its
deviations are still significant compared with RANSAC and
ours. The rotation angle of SAREfit is fluctuated, indicating
its instability. When the outlier percentage is less than 30%,
the fitted semi-axis length is acceptable. However, with
outliers increasing, SAREfit produces more noticeable axis
deviations. Several examples are presented in Fig. 10.

6.3.4 Clustered outliers
Our method exhibits a promising performance amid the

presence of outliers from a uniform distribution. In this
test, we further explore the influence of clustered outliers
on ellipse fitting. As shown in Fig. 11, we generate an
ellipse corrupted by outliers both in uniform and clustered
configurations. The clustered outliers have four different
standard variances (σ = 8, 4, 2, 1). A smaller σ corresponds
to more gathered clustered outliers. Figs. 11(a) to (c) shows
that all methods are affected by the clustered outliers, which
attract the fitted ellipses to themselves. However, the ellipse
E fitted by our method always envelops the high-density
region by working on point density. To utilize this feature,
we initially count the number of points M lying inside E,
and then compute the area πab of E. If M/(πab) > 0.9, then
we consider this region formed by clustered outliers, and
remove the points inside E together with its surrounding
points. This intuitive strategy significantly improves the
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Fig. 10. Comparison examples of the proposed method with SARE-
fit [48]. As observed, the ellipse fitting results of SRAEfit show significant
deviations, in contrast, our method attains successful fittings for both
cases.

-60 -40 -20 0 20 40 60

x-axis

-60

-40

-20

0

20

40

60

y-
ax

is

Elliptic data
Outliers
True ellipse
RANSAC
LMS
GMM
Ours

(a) σ = 8
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(b) σ = 4
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(c) σ = 2
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(d) σ = 1

Fig. 11. Comparisons regarding to clustered outliers. As the standard
variance (σ) of clustered outliers getting smaller, all methods are af-
fected. However, our method can circumvent this problem through a
straightforward detection of clustered outliers, and the ellipse fitting
result is shown in the last image.

robustness of ellipse fitting against clustered outliers as
illustrated in Fig. 11(d).
6.3.5 Ablation study

Given that our method consists of two parts for ellipse
fitting, we perform an ablation study to reveal the effect of
each part.
(1). Effect of the center of the growing region R. We
remove the first part of our algorithm (A1) and simply
choose the barycenter of the input data points as the initial
position. The fitting results denoted by HGMM(Ours)-A1
are reported in Table 4. HGMM(Ours)-A1 produces more
center deviations than HGMM(Ours), and obvious fluctua-
tions in the semi-axis estimation can be seen. The MSE of
HGMM(Ours)-A1 is presented in Fig. 7, which shows that
HGMM(Ours)-A1 returns more deviations for the geometric
parameters, especially for centers and semi-axes. The sig-
nificant gaps between HGMM(Ours)-A1 and HGMM(Ours)
demonstrate the effectiveness of the proposed region grow-

ing strategy.
(2). Effect of the distance-density scheme. We use the same
elliptic parameter attained by A1 as the initial value for
GMM and HGMM(ours), and the statistic results of the
improved GMM, which we call GMM+A1, are recorded
in Table 4. The fitting accuracy of GMM shows obvious
enhancement, especially for the center estimation. As shown
in Fig. 7, compared with that to GMM, the overall MSE
of GMM+A1 largely decreases. Nevertheless, due to the
loss of correct ellipses as demonstrated in Section 6.1,
GMM+A1 still shows significant deviations compared with
our method. Therefore, the distance-density based scheme
can guarantee more accurate ellipse fitting and outperforms
its competitors.
6.3.6 Multiple ellipse fitting

Besides single-ellipse cases, multiple ellipses often exist
in practice. When fitting one of these ellipses, the oth-
ers become pseudo-outliers. To test the robustness of our
proposed method against pseudo-outliers, similar to [49],
we generate three configurations of four ellipses, namely,
disjoint, nested, and overlapped, as illustrated in Fig. 12. Each
ellipse contains 120 points and is disturbed by Gaussian
noise with zero mean and σ = 50%. Additionally, we
generate 480 uniformly distributed outliers in the range
(−60, 60). Therefore, the percentage of outliers is 50%. Note
that for the first fitting, except for the outliers, the other three
ellipses are seen as pseudo-outliers (120×3 = 360), thus we
have a total of 840 outliers (360 + 480 = 840).

The fitting results are illustrated in the second row of
Fig. 12. Given that the initial location of GMM is chosen
randomly and the interference of substantial outliers, its
fitting results are far from satisfactory. In addition, LMS
also reports unsatisfactory results. However, RANSAC ob-
tains relatively better results than GMM and LMS in the
nested and overlapped configurations, but RANSAC shows
evident deviations for the three cases, especially for disjoint
configuration. Meanwhile, our proposed method exhibits a
stable performance and successfully fits one of the correct
ellipses for all configurations.

Similar to RANSAC, our proposed method can be di-
rectly used for multiple ellipse fitting in a single run. For
each fitted ellipse θ̂ = (x0, y0, a, b, γ), we compute its
perimeter by using Ramanujan’s approximate formula [50]:
P ≈ π(3(a+ b)−

√
(3a+ b)(a+ 3b)). Afterward, the point

whose distance to θ̂ is no greater than two is seen as an
inlier, and the total number of inliers is counted as n. A fitted
ellipse is considered a true positive if n/P ≥ 0.7, otherwise,
this ellipse is unreliable and is removed from the candidate
ellipses together with the corresponding data points. This
process continues until no correct ellipses reported after two
consecutive fittings. Different from RANSAC, which itera-
tively fits randomly sampled points, our method locates and
fits high density points, which are more likely from ellipses.
We test above technique for intersected ellipses in Fig. 4 (c)
and previous three configurations. The results are presented
in the first two rows of Fig. 13, in which we successfully fit
all the two intersected ellipses, and shows potential capabil-
ity for complex configurations. Furthermore, we enlarge the
variance of the Gaussian noise for ellipse data in Fig. 4 (c),
and contaminate the data by heavy outliers, as shown in the
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Fig. 12. Top: Three configurations, including disjoint, nested, and overlapped. Bottom: Fitting results attained by the four robust methods.
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Fig. 13. Multiple ellipse fitting by running the proposed method one time.
Our method successfully fits the two intersected ellipses, even under
the disturbance of outliers and density variation, meanwhile showing its
potential for the three complex configurations.

third row of Fig. 13, where ellipse data and outliers share
similar density. We still implement the proposed method
one time and the fourth row shows the results. As observed,
our method attains satisfactory fittings for all cases although
the outlier disturbance and density variation, accompanying
videos can be found in the supplemental material.

6.3.7 Parameter analysis
Our method mainly involves three parameters, i.e., the
bandwidth h, the number of points N in the growing region
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Fig. 14. Analysis of the influences of variation of h on the ellipse
fitting. The top row presents the fitting results attained by the outer and
inner layers based on different h, whereas the bottom row presents the
images of the data model fh = f(x|θ, h) including its top view.

R, and the neighborhood scope ε of x0. We experimentally
investigate the influences of these parameters on ellipse
fitting.
(1). The bandwidth h acts as a smoothing parameter in ker-
nel density estimation. Choosing h, also called bandwidth
selection, is a classical research topic in non-parametric
statistics [51]. Although the best h cannot be easily decided,
we can attain insights into how to choose a proper h from
the following experiments. As shown in Fig. 14, an ellipse
contaminated by noise and outliers is randomly generated.
Figs. 14 (a) and (b) present the outer fitting results obtained
by setting h ∈ [10, 5] and h ∈ [4, 1], respectively. The result
of the first h exhibits more deviations than the second one.
To get more insights, we further visualize the data model
f(x|θ, h) along with its top view for the growing region
by equating h = 10 and h = 1 in Figs. 14 (e) and (f), re-
spectively. From which, we see that f(x|θ, h = 10) is much
smoother than f(x|θ, h = 1), hence the former will produce
an over-smoothing effect on some structures or wash them
out in the data points. By contrast, f(x|θ, h = 1) maintains
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Fig. 15. Investigation of the effect of neighborhood distance ε of x0 (top) and the number of points N in the growing region (bottom) on the ellipse
fitting. To get better performance, when the ellipse is quite large, we can slightly increase ε. Similarly, when heavy outliers are present, we can also
choose a larger N .

the elliptic structure. Based on the outer fitting, the inner
layer has the settings h ∈ [0.9, 0.6] and h ∈ [0.5, 0.2], and
the results are presented in Figs. 14 (c) and (d). We also
present the images of f(x|θ, h = 0.9) and f(x|θ, h = 0.2),
where the latter is more noisy than the former. Therefore,
f(x|θ, h = 0.2) pays more attention to the local structure,
leading to much smaller fitting results. We suggest using
h ∈ [4, 1] and h ∈ [0.9, 0.6] for the outer and inner layers,
respectively.
(2). To analyze the effect of N and ε on the growing region,
we first fix N = 50 and ε = 10, and the growing region
is shown in Fig. 15(a). Afterward, we enlarge the ellipse
several times, such as ×2, ×3, and ×4, as illustrated in
Figs. 15(b) to (d). When the time is less than×4, the growing
region remains satisfactory. However, when the ellipse is
quite large, the distance among the neighborhood points
also increases, thereby leaving few points in the growing
region. To address this problem, we set ε = 40. The growing
region and fitted ellipse are presented in Figs. 15(e) to (f),
which again attains an accurate fitting. Therefore, for quite
large ellipses, to achieve better performance, we suggest
slightly increase ε.
(3). We further test the influences of N on ellipse fitting. To
this end, we contaminate the ellipse by a series of outliers
in percentage of P ∈ {30%, 35%, 40%, 50%} as shown in
Figs. 15(g) to (j). We find that the parameter setting N = 50
and ε = 10 can help our method successfully fit ellipses with
outliers of less than 50%. When P ≥ 50%, the outliers start
to be considered as inliers, thereby biasing the fitted ellipse.
To embrace more inliers, we enlarge N = 70. Afterward,
the fitted ellipse becomes satisfactory as shown in Fig. 15(k).
We further contaminate the ellipse by 70% outliers and set
N = 80. Our method continues to achieve accurate fitting.
Accordingly, when the input data points are corrupted by a
quite large amount of outliers, we can increaseN to improve
the fitting accuracy.

6.4 Real images
We have implemented a series of experiments on 2D point
clouds. Apart from performing synthetic tests where an
evaluation is possible, we also assess the performance of
our proposed method for real images.

(a) Input arcs (b) Outer fitting (c) Inner fitting (d) Final fitting

Fig. 16. The pipeline of ellipse fitting for occluded cases. The outer
layer fits the longest segmented arc individually, and then the inner layer
considers all arcs to further improve the fitting accuracy.

6.4.1 Occluded images

We first apply the proposed method to fit ellipses with oc-
clusion. We use the dataset provided in [52], which contains
six sub-datasets, and each sub-dataset has 50 images with
β ∈ {4, 8, 12, 16, 20, 24} occluded ellipses as shown in the
first column of Fig. 18. To fit the ellipses, we first adopt
the algorithm in [53] to attain elliptic arcs. This algorithm
works by initially extracting the edge curves through the
Canny detector [54] and subsequently approximating them
by using a set of line segments followed by the split at
sharp corners and inflection points. For instance, given an
image with four occluded ellipses, the extracted elliptic arcs
are presented in Fig. 16(a), where different colors indicate
different arcs. As can be seen, an elliptic edge may be split
into several arcs. Actually, the coexistence of short and long
fragments and ellipses with high and low eccentricity is
often encountered in practice. To relieve the ellipse fitting
biases caused by short arcs, previous ellipse detectors [55],
[56], [57] usually need to group together those arcs from the
same ellipse. However, this procedure is not necessary for
our method. Specifically, we initially sort the arcs based on
their length and then start the ellipse fitting from the longest
segment. This procedure is actually the outer fitting process
used in HGMM. Afterward, the inner fitting is invoked
facing all arcs to further enhance the fitting accuracy. The
pipeline is illustrated in Fig. 16. After each fitting, we re-
move the edge points whose distance from the fitted ellipse
is no greater than 2. This process continues until no elliptic
arcs are left.

To objectively compare our method with others, we
adopt three well-known metrics from information retrieval
to our context, namely, precision, recall, and F-measure, which
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Fig. 17. Statistic results of occluded ellipses. From left to right: Results
of precision, recall, and F-measure. Thanks to the hierarchical structure,
our method achieves the best performance among all compared meth-
ods.

Images Edges Taubin DLSF Ahn Prasad Wu GMM Ours

Fig. 18. Fitting comparison of β occluded ellipses (β ∈
{4, 8, 12, 16, 20, 24}). The fine results are highlighted by the blue
boxes. Our method almost successfully fits all ellipses.

are defined as precision = |TP|/|TP + FP|, recall =
|TP|/|TP + FN|, and F-measure = 2/(precision−1 +
recall−1). A fitted ellipse Ef is seen as a true positive (TP)
if its overlapping ratio regarding the ground truth Et is no
less than 0.9, otherwise this ellipse is a false positive (FP).
Meanwhile, an incorrectly fitted ground truth is seen as a
false negative (FN). We follow the manner in [52] to define
the overlapping ratio between Ef and Et:

OverlapRatio(Ef , Et) =
area(Ef ) ∩ area(Et)

area(Ef ) ∪ area(Et)
,

where area(E∗) denotes the number of pixels inside the
ellipse E∗. The fitting results are presented in Fig. 17.
Our method reports the highest precision and F-measure
under different occlusions and achieves the overall highest
recall. By contrast, LS-based methods demonstrate poorer
performance than ours, and GMM is much lower than them,
thereby highlighting the benefit of the proposed hierarchical
structure. Specifically, the outer layer only fits the desig-
nated elliptic arc and provides reasonable initial parameters,
and then the inner layer, based on the outer parameter, is
applied to the whole arcs to further improve fitting accuracy.
However, due to the splitting of ellipses, LS-based methods
may observe major fitting deviations for small elliptic arcs,
especially for arcs with a small curvature. A comparison
result is presented in Fig. 18. Additional comparison images
are provided in the supplemental material, together with a
fitting demo.

6.4.2 Iris recognition
We then examine ellipse fitting for iris images. As a bio-
metric identification technique, iris recognition plays an
important role in real-life applications. A key step in iris
recognition is identifying the pupil region of the human

eye and localizing the iris [41]. However, outliers are often
observed in practice, such as the interference of spectral
reflections. See the image in Fig. 19(a) for reference.

We apply the proposed method to fit the boundaries of
the iris and pupil for the images in Figs. 19(a) and (e). To
this end, Canny detector is first used to extract the edge
curves. The threshold values used in the detector are set
to [0.03, 0.09]. Afterward, we perform image segmentation
to obtain the edge contours. The extracted boundaries are
presented in Figs. 19(b) and (f), where the red pixels in-
dicate the inner boundaries and the black pixels indicate
the outer ones. Several outliers can be observed in the
inner boundaries, which affect the accuracy of ellipse fitting.
Additionally, given the interference of the eye lid and eye
lashes, the upper bounds of the iris are partially occluded,
thereby disturbing the fitting performance. To simplify the
fitting process, we directly take the whole points as the outer
layer input. The fitting results of our method are presented
in Figs. 19(c) and (g). As observed, the fitted ellipses match
the boundaries well, thereby achieving a reliable localization
for irises and pupils. We also compare the proposed method
with others and report the results in Figs. 19(d) and (h).
Fig. 19(d) shows that the other methods produce smaller
ellipses than ours for the outer boundary fitting. Moreover,
as the outliers increase, the other methods tend to produce
large deviations as shown in Fig. 19(h). Notably, Ahn and
Prasad return no results in this case.

6.4.3 Spacecraft location
Pose estimation of spacecrafts is a common astronautic task,
and their outlines are projected as ellipses. In this experi-
ment, we apply the proposed method to fit the ellipses for a
spacecraft image, which is helpful for the subsequent pose
determination. The Voyager 1 image2 shown in Fig. 19(i)
is used in this experiment. The edge contours extracted
from this image is presented in Fig. 19(j). These contours
are obtained after the Canny edge detection (the threshold
is [0.03, 0.09]) and image segmentation. Several outliers
are observed due to the spacecraft structure. The ellipses
obtained by the proposed method and those obtained by
all compared methods are shown in Figs. 19(k) and (l),
respectively. As can be seen, the LS-based methods achieve
a fine fitting yet report some deviations. By contrast, the
proposed method achieves preferable results due to its
robustness. Meanwhile, RANSAC and GMM produce large
deviations that indicate their instability.

6.4.4 Ultrasound fetal segmentation
In this experiment, we apply the proposed method for fetal
abdomen segmentation in ultrasound images. Duly moni-
toring fetal growth is very important for prenatal care. Fetal
abdomen circumference (AC) is relevant to fetal growth and
is an effective index for fetal weight estimation [58]. In prac-
tice, fetal abdomen segmentation is a useful procedure for
AC measurement. We deploy the proposed method to fit the
ellipse that characterizes the fetal contour. An ultrasound
fetal image is presented in Fig. 19(m). The edge segments
extracted via Canny edge detection ([0.03, 0.09]) and image
segmentation are shown in Fig. 19(n). Given the nature of

2. https://mobilemag.com/2013/03/22/voyager-1-where-is-it/

https://mobilemag.com/2013/03/22/voyager-1-where-is-it/
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the image, there inevitably exist outliers. The fitting results
of the proposed method and the other methods are reported
in Figs. 19(o) and (p), respectively. Our proposed method
provides a relatively satisfactory estimation, whereas Ahn
and Wu largely deviate from the ground truth as seen
from their rotation angles. Meanwhile, GMM produces an
evidently smaller estimation, whereas Prasad produces the
largest estimation among all methods.

6.4.5 Antique measurement

We also apply the proposed method to an interesting mea-
surement for the antique caliber. To avoid manual contami-
nations, we estimate the elliptic parameter from the antique
image and then restore the true value with known camera
intrinsics. The bottom of Fig. 19 shows a pottery antique3

with extracted edge segments. The fitting results of our
method and the other compared methods are reported in
Figs. 19(s) and (t). Although the edge has been disturbed as
several segmented fragments, the ellipse fitting result of our
method is still quite close to the ground truth. The LS-based
methods report similar results. However, both RANSAC
and GMM produce significant deviations.

7 DISCUSSION AND CONCLUSIONS

We have presented a robust and accurate method for ellipse
fitting in noisy, outliers-contained, and occluded environ-
ments. Our first contribution lies in the investigation of
cases where GMM fails to fit the correct ellipses. We pro-
pose a novel metric that combines distance and density for
ellipse fitting and is reliable for determining correct ellipses.
We also propose a framework that expands GMM to two
hierarchical layers, of which the outer layer is designed
to provide reasonable initial parameters that are estimated
from a density-based region growing scheme and the inner
layer is applied to the whole data to further improve fitting
accuracy. The performance of the new method is compared
with that of eight representative state-of-the-art methods
by performing versatile experiments on synthetic images
and real images. Owing to the hierarchical structure, our
method shows significant improvements in its robustness
against outliers, demonstrates promising performance, and
narrows down the iterative interval of the bandwidth,
thereby accelerating the fitting process. Our code is available
at https://github.com/zikai1/HGMMEllFit.

Since our method involves the density comparison, it
is difficult to recover the true ellipses when ellipse points
and outliers have the same density as shown in Fig. 20.
However, all robust methods fail to deal with such cases.
The reason is that the elliptic structure is no longer salient
among the input data, and algorithms take all points as
the target ellipse. Nevertheless, as demonstrated in previous
experiments, our method works well for most scenarios. To
circumvent this remarkably difficult problem, a probably
feasible way is to explore more geometric properties of
ellipses and cast it into an ellipse detection framework.

Although the proposed method is aimed toward ellipse
fitting, by rebuilding the model g(x|θ) on the basis of the

3. http://www.linzi.gov.cn/art/2016/2/18/art 6443 1092234.html
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(q) (r) (s) (t)

DLSF Taubin Ahn Prasad Wu
RANSAC LMS GMM Ours

Fig. 19. Ellipse fitting for iris recognition (first two rows), spacecraft loca-
tion (third row), fetal abdomen segmentation (fourth row), and antique
caliber measurement (last row). Left to right columns: Input images,
extracted edge segments, fitting results attained by our method, and
fitting results attained by all compared methods.
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Fig. 20. When the ellipse data and outliers have the same density, the
elliptic structure is no longer salient, thereby all robust methods return
biased fittings.

different conics characterized by θ, the proposed frame-
work can easily be generalized to fit other conics under
noise/outlier settings. An interesting direction for future
research is to generalize the method to fit 3D geometric
primitives, such as spheres, ellipsoids, and cylinders in
point clouds. For this case, apart from the distribution of
data points, one can explore more useful geometric features,
such as normals and curvatures, and encapsulate them into
the data model f(x) by an anisotropic covariance matrix
to achieve a more accurate fitting. Additionally, exploiting

https://github.com/zikai1/HGMMEllFit
http://www.linzi.gov.cn/art/2016/2/18/art_6443_1092234.html
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efficient optimization methods for the 3D geometric pa-
rameters, for instance, nine parameters for ellipsoids, or by
means of deep learning techniques, present other directions
for the future work.
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