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We provide an enumeration of all possible morphologies of non-degenerate Darboux 
cyclides. Based on the fact that every Darboux cyclide in R3 is the stereographic 
projection of the intersection surface of a sphere and a quadric in R4, we transform 
the enumeration problem of morphologies of Darboux cyclides to the enumeration of the 
algebraic sequences that characterize the intersection of a sphere and a quadric in R4.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cyclides are originally defined by Dupin (1822), hence since called Dupin cyclides, as algebraic surfaces of degree at 
most four whose lines of curvatures are all circles. There is a long history of people exploring the geometric properties 
of Dupin cyclides as well as their applications in geometric modeling, such as serving as blending surfaces and boundary 
representations (Pratt, 1990, 1995).

Darboux cyclides, as a superset of Dupin cyclides and quadrics, are mainly investigated by Kummer (1865) and Darboux 
(1880). It is proved that almost every Darboux cyclide contains from two to six real circles through almost every point 
(Blum, 1980; Coolidge, 1916; Takeuchi et al., 2000), and there is a recent conclusion stating that a surface which carries 
three families of circles is a Darboux cyclide (Lubbes, 2013). Further explorations on these families of circles on Darboux 
cyclides can be found in Franquiz et al. (2006) and Pottmann et al. (2012). This circular arc structure of Darboux cyclides 
attracts the attention of geometric modeling community in applying them to contemporary freeform architecture (Bo et 
al., 2011; Pottmann et al., 2007, 2008, 2012). However, compared with Dupin cyclides, although with more freedom in 
the shape and structure, the theoretical investigations of Darboux cyclides in the literature are relatively rare. It is proved 
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in Takeuchi et al. (2000) that a nonsingular Darboux cyclide is topologically a torus, a sphere or two spheres, and that 
a singular one is conformally equivalent to a quadric. However, there still lacks a finer enumeration on more detailed 
morphologies of Darboux cyclides, which is crucial to predicting the local feature in modeling.

Coolidge (1916) has proved that a Darboux cyclide is the stereographic projection of the intersection of a sphere and 
another quadric in R4, which casts light on our exploration of Darboux cyclides by transiting to the intersection of two 
quadrics (brief as QSI) in R4. There is a rich literature on computation, classification as well as morphologies enumeration 
of the intersection of two quadrics in 3-dimensional space. See Levin (1976, 1979); Miller and Goldman (1995); Wang et al. 
(2002, 2003); Dupont et al. (2003, 2008a,b,c); Mourrain et al. (2005); Lazard et al. (2006) for algorithms of computing the 
exact parametrization of QSIs, and Bromwich (1906); Wang et al. (2003); Tu et al. (2002, 2009) for algebraic approaches to 
enumerating and classifying the morphologies of QSIs.

We provide a finer enumeration of morphologies of Darboux cyclides, which takes both the topological and algebraic 
properties of the Darboux cyclides into account. The main result is shown in Theorem 1, which is further merged into 14 
non-equivalent morphologies in Table 3. Besides, Table 4 gives a brief description of all the non-equivalent morphologies. 
Our enumeration of all possible morphologies of Darboux cyclides is performed by going through all valid QSIs morphologies 
in R4, inspired by the fact that stereographic projections bridge between Darboux cyclides in R3 and QSIs in R4. The 
enumeration of all QSIs morphologies is first through the enumeration of the Segre characteristics and index sequences of 
the quadric pencil, which generalizes the result of Tu et al. (2009) from PR3, the 3D real projective space, to PR4, the 4D 
real projective space. Different affine realizations of QSIs from PR4 to R4 are then considered: realizing the required sphere 
in the pencil helps define the plane at infinity, and the choices of the other four axes define the stereographic projection 
center.

The remainder of the paper is organized as follows. In Section 2, we review the previous work about cyclides and QSIs; in 
Section 3, we present necessary preliminary knowledge on Darboux cyclides, stereographic projections, as well as algebraic 
characterizations of QSIs; in Section 4, we give an enumeration of the morphologies of Darboux cyclides by going through 
all suitable QSIs, where detailed proofs are provided. We draw our conclusions in Section 5.

2. Related work

Cyclides. Dupin Cyclides are first defined by the French mathematician Dupin, as the envelopes of all the spheres with 
possibly distinct radii touching three given fixed spheres (Dupin, 1822). There is plenty of theoretical work exploring the 
algebraic and geometric properties of Dupin cyclides, see Maxwell (1868); Casey (1870); Cayley (1873) for early theoretical 
explorations. Cyclide patches are first used in free-form modeling in the early 1980s, see Martin et al. (1982); McLean 
(1985) for constructions of cyclide patches; a conversion from cyclide patches to rational biquadratic Bézier forms is given 
by Foufou et al. (2005). Cyclides have fruitful applications in solid geometric modeling due to their low-degree in both 
algebraic and parametric representation, intuitive shape parameters, as well as flexibility in free-form surfaces design, see 
Chandru et al. (1989); Pratt (1990); Allen and Dutta (1997); Foufou and Garnier (2004); Druoton et al. (2014).

Darboux cyclides are a generalization of Dupin cyclides, and have a long history in classical geometry (Coolidge, 
1916; Darboux, 1880). Takeuchi et al. (2000) discover that Darboux cyclides can carry up to six families of real circles. 
Krasauskas and Zubė (2014) study Darboux cyclides using the language of geometric algebra. Recently, Darboux cyclides 
attract the attention of the geometry modeling community by their circular arc structure. Bo et al. (2011) first apply Dar-
boux cyclides in architecture geometry, where cyclide structures show their power in freeform modeling. Motivated by 
potential applications of Darboux cyclides in architecture, Pottmann et al. (2012) propose computational tools for iden-
tification of circle families on a given cyclide, and provide a complete classification of the hexagonal webs on Darboux 
cyclides.

QSIs. The computation, classification as well as morphologies determination of QSIs is a classic problem both in algebraic 
geometry and in geometric modeling. Many works target at computing the exact parametrization of the QSIs, while some 
others focus on morphologies classifications of the QSIs using algebraic tools. Levin (1976, 1979) proposes a parametric 
algorithm to compute the QSIs in R3 based on the observation that there is a ruled quadric in the pencil of any two 
distinct quadrics in PR3. Segre (1884) classify pencils of quadrics by Segre characteristic in arbitrary dimensions. Pieter 
Belmans further points out that the classification of pencils of quadrics in PR4 is equivalent to the classification of Segre 
quartic surfaces (Belmans, 2016). Wilf and Manor combine Levin’s approach with the Segre characteristic to describe the 
shape and structure of QSIs (Wilf and Manor, 1993). Wang et al. (2003) provide an enhanced version of Levin’s method 
that is able to classify the QSIs and compute a rational parametrization of one QSI when the QSI is a singular curve. 
Dupont et al. (2003, 2008a,b,c) give an exact arithmetic to parameterize QSIs in R3, which is near-optimal in the sense that 
the number of distinct square roots appearing in the coefficients of these parameterized polynomial functions is minimal. 
Wang et al. (2002) present an algebraic method for classifying and parameterizing the intersection curve of two quadric 
surfaces, which is based on the observation that the intersection curve of two quadrics is birationally related to a plane 
cubic curve. Tu et al. (2002, 2009) present a complete classification of the 35 QSIs in PR3 using Segre characteristics and 
index sequences, and an efficient algorithm of determining the morphologies of QSIs is provided, which is mainly based on 
signature sequence computations. Besides, Jia et al. (2016) propose an algorithm of computing the QSI variations for a pair 
of moving quadrics.
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Fig. 1. Non-equivalent morphologies of Darboux cyclides in terms of (a) topology and (b) type of singularities.

Fig. 2. Examples of non-equivalent morphologies of Darboux cyclides in terms of separability.

3. Preliminaries

3.1. Morphology

The morphologies of Darboux cyclides in R3 in this paper is a finer classification than homeomorphism. We take both 
topological and algebraic properties of the cyclides into account. If two Darboux cyclides are homeomorphic to each other, 
we further consider the existence and type (cusp, crunode, acnode) of the real singularities, and the separability of the 
surface in R3 (see Note 1 below). If two cyclides show the same properties in all these factors, and there exists a continuous 
deformation that sends one cyclide to the other without changing the singularity existence and type (see Note 2 below), we 
say that the two cyclides have the equivalent morphologies; otherwise they are said to have non-equivalent morphologies, 
see Fig. 1 for example.

Note 1. We define the separability of a Darboux cyclide as follows. If a Darboux cyclide D can be written as D = D1
⋃

D2, 
where either

1. D1
⋂

D2 = ∅ (case I) or
2. D1

⋂
D2 = Q ∈R3, with Q being a crunode of the surface (case II),

and if there exists a plane � : �(x) = 0 (x = (x, y, z) ∈R3) such that

1. D1 = {x ∈D|�(x) > 0}, D2 = {x ∈D|�(x) < 0} for case I and
2. D1 = {x ∈D|�(x) ≥ 0}, D2 = {x ∈D|�(x) ≤ 0} for case II,

then the cyclide is said to be separable; otherwise it is non-separable. See Fig. 2 (a) for case I and (b) for case II.

Note 2. (Fig. 3)

Fig. 3. Examples of non-equivalent morphologies with the same topology, singularity number and type, separability, but one can not be continuously 
deformed to the other without changing the existence or type of the singularity.
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Subject to the above rules, we derived the following main result of the paper. Detailed analysis will be shown in the 
later context.

Theorem 1. There are in total 14 non-equivalent morphologies of Darboux cyclides, listed in Table 3.

3.2. Darboux cyclides and stereographic projection

A Darboux cyclide in R3 is a quartic algebraic surface with the equation

D(x, y, z) := λ(x2 + y2 + z2)2 + (x2 + y2 + z2)L(x, y, z) + Q (x, y, z) = 0, (1)

where λ is a constant, and Q (x, y, z) and L(x, y, z) are a quadratic and a linear polynomial in R[x, y, z] (Pottmann et al., 
2012). We say that the Darboux cyclide is non-degenerate, if λ �= 0 and D is irreducible; otherwise it is degenerate. In this 
paper we focus only on non-degenerate Darboux cyclides, that is, the cyclide is strictly a degree four algebraic surface. 
Hence, quadrics and cubics which are special cases for Darboux cyclides are excluded in our analysis.

A stereographic projection with the projection center O = (0, 0, 0, 1) sends a point x̄ = (x1, x2, x3, x4) ∈ R4 on the sphere 
� : x2

1 + x2
2 + x2

3 + x2
4 = 1 to a point x = (x, y, z) ∈R3 via the map:

x = (x, y, z) = 1

1 − x4
(x1, x2, x3), (2)

where the projection center O is mapped to the ideal point ∞, and conversely,

x̄ = (x1, x2, x3, x4) = 1

x2 + 1
(2x,2y,2z,x2 − 1). (3)

The corresponding points x̄ and x lie on a straight line through the projection center O.

Lemma 1. (Coolidge, 1916) A Darboux cyclide D ∈R3 is the stereographic projection of a surface D̄ in the unit sphere � ∈R4 which 
is the intersection of � with another quadric � ∈R4 .

The following derivation of the transformation between Darboux cyclides and QSIs shown in Pottmann et al. (2012) will 
be applied to our later analysis.

Cyclide → QSI:
Write the quadratic part in (1) as Q (x) = q2(x) + q1(x) + q0, where x = (x, y, z) and qi is the degree i homogeneous part 

of Q . Substituting (2) into (1) and considering � : x2
1 + x2

2 + x2
3 + x2

4 = 1 yield

� : λ(1 + x4)
2 + (1 + x4)L(x1, x2, x3) + q2(x1, x2, x3) + q1(x1, x2, x3)(1 − x4) + q0(1 − x4)

2 = 0, (4)

which is a quadric in R4. The QSI is the intersection of the sphere � and the quadric �.

QSI → Cyclide:
Conversely, a quadric � in R4 can be written as

� : q2(x1, x2, x3) + q1(x1, x2, x3)x4 + q0x2
4 + r1(x1, x2, x3) + r0x4 + c0 = 0, (5)

where q2, {q1, r1} and {q0, r0, c0} are the quadratic, linear and constant parts, respectively. Substituting (3) to (5) gives

(q0 + r0 + c0)(x2 + y2 + z2)2 + 2(x2 + y2 + z2)(q1(x, y, z) + r1(x, y, z) + c0 − q0) + Q (x, y, z) = 0, (6)

where

Q (x, y, z) = 4q2(x, y, z) + 2(r1(x, y, z) − q1(x, y, z)) + q0 − r0 + c0.

Obviously, Equation (6) represents a Darboux cyclide.
The above derivation also suggests

Lemma 2. λ �= 0 in Equation (1) if and only if the quadric � for the QSI does not pass through the stereographic projection center O.
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3.3. QSI

Let A: X T A X = 0 and B: X T B X = 0 be two quadrics, where X = (x, y, z, u, v) ∈ PR4 (4D real projective space) is a 
homogenous coordinate for ( x

v , y
v , z

v , uv ) ∈R4 and A, B are 5 × 5 real symmetric matrices. A quadric pencil given by A and 
B is represented as λA − B , where λ ∈PR is a constant.

Note that the QSI of any two quadrics in the pencil λA − B is exactly the same as the QSI of A and B. Therefore, when 
considering the QSI, we can always assume that A is non-singular; otherwise we can replace A by a non-singular quadric A′
in the pencil. Note that there are always non-singular quadrics if det(λA − B) does not vanish identically (Tu et al., 2009).

We next review Jordan Forms and Quadric Pair Canonical Forms in Uhlig (1976).

3.3.1. Jordan forms and Segre characteristics

Definition 3.1. A k × k square matrix of the form

M =

⎛
⎜⎜⎝

λ e
· ·

· e
λ

⎞
⎟⎟⎠

is called a Jordan block of type I associated with λ if λ ∈R and e = 1 for k ≥ 2 or M = (λ) with λ ∈R for k = 1; M is called 
a Jordan block of type II with respect to complex conjugated values a ± ib if

λ =
(

a −b
b a

)
a, b ∈R, b �= 0 and e =

(
1 0
0 1

)
,

for k ≥ 4 or

M =
(

a −b
b a

)

for k = 2, with a, b ∈ R, b �= 0.

Lemma 3. For any matrix A ∈Rk×k, there exists a Jordan normal form matrix J⎛
⎜⎜⎜⎝

C(λ1)

C(λ2)

. . .

C(λk)

⎞
⎟⎟⎟⎠

congruent to A, where

C(λi) =

⎛
⎜⎜⎜⎝

J i
1

J i
2

. . .

J i
ki

⎞
⎟⎟⎟⎠

is called the full Jordan chain associated with the eigenvalue λi , i = 1, · · · , k, and J i
1, · · · , J i

ki
are all Jordan blocks (of type I or I I), 

associated with the same eigenvalue λi of the matrix A. The Jordan normal form is unique up to permutations of the Jordan blocks.

Definition 3.2. The Segre characteristic of the quadric pencil λA − B is the integer chain of orders of the blocks in the Jordan 
normal form of the matrix A−1 B , with those integers corresponding to blocks containing the same eigenvalue bracketed 
together, and the number of distinct real eigenvalues of the matrix A−1 B as the subscript. For example, if the Jordan form 
of the matrix A−1 B is⎛

⎜⎜⎜⎝

α 1
α

α
β

β

⎞
⎟⎟⎟⎠ ,

where α and β are real numbers, the Segre characteristic of the quadric pencil λA − B is [(21)(11)]2. In this example, we 
also say that the Segre characteristic of λA − B associated with the root α is [21], and associated with the root β is [11].
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3.3.2. Quadric pair canonical form

Lemma 4 (Quadric pair canonical form). Let A and B be a nonsingular pair of real symmetric matrices of size n. Suppose that A−1B
has real Jordan normal form diag( J1, ..., Jr, Jr+1, ..., Jm), where J1..., Jr are Jordan blocks of type I corresponding to the real eigen-
values of A−1 B and Jr+1, ..., Jm are Jordan blocks of type I I corresponding to the complex eigenvalues of A−1 B. Then A and B are 
simultaneously congruent by a real congruent transformation to

Ā = diag(ε1 E1, ..., εr Er, Er+1, ..., Em)

and

B̄ = diag(ε1 E1 J1, ..., εr Er Jr, Er+1 Jr+1, ..., Em Jm),

respectively, where εi = ±1 and the Ei are of the form⎛
⎜⎜⎝

0 · 0 1
· · 1 ·
· 1 · ·
1 0 · 0

⎞
⎟⎟⎠

of the same size as J i, i = 1, 2, ..., m. The signs of εi are unique (up to permutations) for each set of indices i that are associated with 
a set of identical Jordan blocks J i of type I .

Since the two canonical quadratic forms are projectively equivalent to the original two quadratic forms, Tu et al. (2009)
show the following result.

Lemma 5. The QSI of two quadrics A: X T A X = 0 and B: X T B X = 0 in PR4 has the equivalent morphologies with that of the QSI of 
their canonical quadratic forms Ā and B̄ with quadric form Ā and B̄ given in Lemma 4.

Note 3. The terminology “morphology” in Tu et al. (2009) takes topology, real and imaginary components, types and numbers 
of singularities into account. Our theoretical analysis on enumerations of morphologies of cyclides is based on Tu et al. 
(2009); however, in the final enumeration, we further distinguish the separability of the surface defined in Note 1, and we 
enumerate only the real component of the surface.

3.3.3. Index sequences
The characteristic polynomial of the pencil λA − B in PR4 is defined by

f (λ) = det(λA − B), (7)

which is a degree 5 polynomial with real coefficients. In order to guarantee the existence of nonsingular quadrics, we 
assume the characteristic polynomial does not vanish identically.

Index function: The index function Id(λ) of a quadric pencil λA − B is defined as the number of positive eigenvalues 
of the matrix λA − B . In our discussion, both matrices A and B are of order 5, so Id(λ) ∈ {0, 1, 2, 3, 4, 5}. Since λA − B is 
symmetric, it represents a sphere when rank(λA − B) = 5 and Id(λ) = 4. Note that Id(λ) has a constant value in the interval 
between any two consecutive real roots of f (λ) = 0, and has a jump across a real root of f (λ) = 0, whose jumping value 
depends on the Jordan block associated with the root as an eigenvalue of the matrix λA − B , see the second and third 
columns in Table 1. Besides, Id(+∞) + Id(−∞) = rank(A) (Tu et al., 2009).

Index sequence: Let λi , i = 1, ..., r be all different real roots of f (λ) = 0 in the ascending order. Let qk , k = 1, 2, ..., r − 1
denote arbitrary rational numbers disconnected the λi , i.e.,

−∞ < λ1 < q1 < λ2 < ... < qr−1 < λr < ∞.

Denote sk = Id(qk), k = 1, 2, ..., r − 1, and s0 = Id(−∞), sr = Id(∞). Then the index sequence of A and B is defined as

〈s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr〉 ,

where ↑ stands for a real root, single or multiple, of f (λ) = 0. Since a real root λi can be multiple, and the Jordan chain 
associated with a multiple root λi of the matrix λi A − B can have distinct forms, we shall indicate these distinct forms in 
place of ↑ in the index sequence, see the first column in Table 1. For example, a real root with Segre characteristic [11] will 
be denoted by || in place of an ↑, and a real root with the Segre characteristic [21] shall be denoted by ��+ | or ��− | in place 
of an ↑. Examples of index sequences are: 〈1|2|1|2|3|4〉, 〈1��−1|2||4〉, 〈2� � �+3��+3〉, etc.

Lemma 6. (Tu et al., 2009) The QSIs of different quadric pencils whose index sequences are in the same equivalent class under the 
following rules are of the same morphologies.
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Table 1
The notions (the first column) represent a real root in place of ↑, depending on the 
size and sign of Jordan block (the second column) associated to the corresponding 
eigenvalue of A−1 B . The index jump value (the third column) across each real root 
depends on the Jordan form.

Notion Jordan form Index jump

| 1 × 1 Jordan block +1 or −1
��+ or ��− 2 × 2 Jordan block with the sign + or − 0
� � �+ or � � �− 3 × 3 Jordan block with the sign + or − +1 or −1
� � � �+ or � � � �− 4 × 4 Jordan block with the sign + or − 0
� � � � �+ or � � � � �− 5 × 5 Jordan block with the sign + or − +1 or −1

(1) Rotation rule:

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< 5 − sr−1 ↑ s0 ↑ ... ↑ sr−2 ↑ sr−1 >,

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< s1 ↑ s2 ↑ ... ↑ sr ↑ 5 − s1 > .

(2) Reversal rule:

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< sr ↑ sr−1 ↑ ... ↑ s1 ↑ s0 > .

(3) Complement rule:

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< 5 − s0 ↑ 5 − s1 ↑ ... ↑ 5 − sr−1 ↑ 5 − sr > .

4. Darboux cyclides classification

We now enumerate the morphologies of Darboux cyclides by investigating QSIs in PR4 by

1. Enumerate all valid Segre characteristics;
2. For each valid Segre characteristic, enumerate all valid and non-equivalent index sequences;
3. For each valid index sequence, enumerate the morphologies of the Darboux cyclide derived from the corresponding QSI;
4. Classify all enumerated Darboux cyclides by their morphologies.

4.1. Validity of Segre characteristic/index sequence/QSI

Definition 4.1. The signature of a quadric X T A X = 0 in PR4 is the integer pair (n+, n−), where n+, n− are numbers of the 
positive eigenvalues and negative eigenvalues of the matrix A.

Definition 4.2. A Segre characteristic/index sequence/QSI is said to be valid, if there exists a quadric pencil λA − B in PR4

with this Segre characteristic/index sequence/QSI that has a quadric λ∗ A − B with the signature (4, 1) or (1, 4) for some 
constant λ∗ ∈PR; otherwise we say the Segre characteristic/index sequence/QSI is invalid.

Proposition 4.1. An index sequence is valid if and only if it is equivalent under the rotation rule, reversal rule, or complement rule to an 
index sequence which contains the index 1 or 4. For example, 〈2� � �+3|4|3〉 is valid; 〈2|3|2|3|2|3〉 is invalid since it is non-equivalent 
to any index sequences containing the index 1 or 4. A QSI in PR4 is valid if and only if its corresponding index sequence is valid. We 
say that a Segre characteristic is valid if there is at least one valid index sequence corresponding to it.

Since the characteristic polynomial f (λ) = 0 is of degree 5, all Segre characteristics of quadric pencils in PR4 are 
enumerated in Table 2, with valid and invalid ones separately listed. The validity of the Segre characteristic can be checked 
by the validity of all their corresponding index sequences using Proposition 4.1.

4.2. Enumeration of valid index sequences and morphologies of Darboux cyclides

For each Segre characteristic, we enumerate all valid index sequences (step 2) as follows:

(1) The index numbers in the sequence can only be from {0, 1, 2, 3, 4, 5};
(2) The index jump across each real root follows the law in Table 1;
(3) Only a representative one is chosen for each equivalent class of the sequence under the rules in Lemma 6;
(4) Check the validity of the representative index sequence.
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Table 2
The first column indicates the multiplicity of the real roots of the characteristic polynomial, the second 
and the third column are the corresponding Segre characteristic.

Real root Valid Segre characteristic Invalid Segre characteristic

5 simple [11111]5 /

3 simple [11111]3 /

1 simple / [11111]1

1 double [2111]4 [(11)111]4 [(11)111]2 [2111]2

2 double [21(11)]3 [(11)(11)1]3 [221]3

1 triple [311]3 [(21)11]3 [(111)11]3 [(111)11]1 [311]1 [(21)11]1

1 triple + 1 double [3(11)]2 [(21)(11)]2 [(111)(11)]2 [(111)2]2 [32]2 [(21)2]2

1 quadruple [(31)1]2 [(211)1]2 [(1111)1]2 [41]2 [(22)1]2

1 quintuple [(311)]1 [(2111)]1 [5]1 [(41)]1 [(32)]1 [(11111)]1

Each valid index sequence corresponds to a QSI morphology, from which we enumerate Darboux cyclides in the following 
way:

(i) Write down two canonical quadrics Ā and B̄ in PR4;
(ii) Find two quadrics A∗ and B∗ in the pencil λ Ā − B̄ so that A∗ has signature (4, 1) or (1, 4);

(iii) Enumerate four representative affine realizations of the QSI from PR4 to R4 (see Remark 4.1);
(iv) Compute stereographic projection of each QSI in R4 to get all Darboux cyclides.

Remark 4.1. Suppose the quadric A∗ in step (ii) has signature (4, 1) and equation X T A∗ X = 0, where X = [x, y, z, u, v]T

and A∗ = diag(λ1, λ2, λ3, λ4, λ5). Without loss of generality, we assume that λi > 0, i = 1, 2, 3, 4 and λ5 < 0. On one hand, 
letting v = 0 be the plane at infinity realizes an affine sphere in R4; on the other hand, there are four ways of realizing 
the other four axes in the follow-up stereographic projection in Equation (2): letting x = x4, y = x4, z = x4 or u = x4. Note 
that since the projection center is (0, 0, 0, 1), the axes x1, x2, x3 have symmetric performance and only the assignment of 
x4 matters. Therefore, for each QSI in PR4, we enumerate all these four affine realizations of R4 and the derived Darboux 
cyclides.

We next show the above process in every detail for the Segre characteristic [11111]5.

Theorem 2. Given two quadrics A: X T A X = 0 and B: X T B X = 0, if the Segre characteristic of the quadric pencil is [11111]5, then 
the pencil has the following valid index sequences and corresponding morphologies of Darboux cyclides:

(1) 〈1|2|1|2|3|4〉
(a) Case 1.1: topologically two spheres, with one inside the other, no singularities;
(b) Case 1.2: topologically two separate spheres, no singularities.

(2) 〈1|2|3|2|3|4〉
(a) Case 2: topologically a torus, no singularities.

Proof. The Segre characteristic suggests that f (λ) = 0 has five distinct real roots λ1 < λ2 < λ3 < λ4 < λ5. According to 
Lemma 4, the quadric pair canonical form is

Ā = diag(ε1, ε2, ε3, ε4, ε5) and B̄ = diag(ε1λ1, ε2λ2, ε3λ3, ε4λ4, ε5λ5),

where εi = ±1, i = 1, 2, 3, 4, 5. Since Id(−∞) + Id(+∞) = 5, the index sequence must have the form 〈0| ∗ | ∗ | ∗ | ∗ |5〉, 
〈1| ∗ | ∗ | ∗ | ∗ |4〉 or 〈2| ∗ | ∗ | ∗ | ∗ |3〉. Considering the equivalent rules in Lemma 6 and that the index jump across each 
simple root is ±1, all representative index sequences are 〈0|1|2|3|4|5〉, 〈1|2|1|2|3|4〉, 〈1|2|3|2|3|4〉 and 〈2|3|2|3|2|3〉.

(1) If the index sequence is 〈0|1|2|3|4|5〉, then ε1 = ε2 = ε3 = ε4 = ε5 = 1, i.e.,

Ā = diag(1,1,1,1,1) and B̄ = diag(λ1, λ2, λ3, λ4, λ5).

The corresponding canonical quadrics are

x2 + y2 + z2 + u2 + v2 = 0 and λ1x2 + λ2 y2 + λ3z2 + λ4u2 + λ5 v2 = 0.

Since Ā is a vacuous sphere, the QSI is also vacuous, we omit this case in Table 5.
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(2) If the index sequence is 〈1|2|1|2|3|4〉, then ε1 = 1, ε2 = −1, ε3 = ε4 = ε5 = 1, i.e.,

Ā = diag(1,−1,1,1,1) and B̄ = diag(λ1,−λ2, λ3, λ4, λ5),

the corresponding canonical quadrics are:

x2 − y2 + z2 + u2 + v2 = 0 and λ1x2 − λ2 y2 + λ3z2 + λ4u2 + λ5 v2 = 0.

Letting y = 0 be the plane at infinity, we have a sphere and a quadric in R4:

Ā : x2 + z2 + u2 + v2 = 1 and B̄ : λ1x2 + λ3z2 + λ4u2 + λ5 v2 − λ2 = 0.

Letting x1 = z, x2 = u, x3 = v, x4 = x, the stereographic projection in Equation (2) through center (0, 0, 0, 1) gives

D1 = (λ2 − λ1)(x2 + y2 + z2)2 + 2(λ1 + λ2)(x2 + y2 + z2) − 4(λ3x2 + λ4 y2 + λ5z2) + λ2 − λ1 = 0, (8)

whose morphology is topologically two spheres, with one inside the other, no singularities, denoted as Case 1.1 in 
Table 5; similarly, we can prove that the other three ways of realizing R4 by setting x4 = y or x4 = u or x4 = v give the 
same Darboux cyclide, which is topologically two separate spheres, no singularities, denoted by Case 1.2 in Table 5.

(3) If the index sequence is 〈1|2|3|2|3|4〉, then ε1 = ε2 = 1, ε3 = −1, ε4 = ε5 = 1, i.e.,

Ā = diag(1,1,−1,1,1) and B̄ = diag(λ1, λ2,−λ3, λ4, λ5).

Choosing z = 0 as the plane at infinity realizes a sphere and a quadric in R4:

Ā : x2 + y2 + u2 + v2 = 1 and B̄ : λ1x2 + λ2 y2 + λ4u2 + λ5 v2 − λ3 = 0.

Letting x4 = x, x1 = y, x2 = u, x3 = v gives a realization of R4. The stereographic projection through center O =
(0, 0, 0, 1) gives

D2 = (λ5 − λ3)(x2 + y2 + z2)2 − 2(λ5 + λ3)(x2 + y2 + z2) + 4(λ1x2 + λ2 y2 + λ4z2) + λ5 − λ3 = 0, (9)

which is a ring cyclide; similarly, we can prove that the other three ways of realizing R4 by setting x4 = y or x4 = u or 
x4 = v give the same Darboux cyclide morphology, denoted by Case 2 in Table 5.

(4) If the index sequence is 〈2|3|2|3|2|3〉, from Proposition 4.1, we know this index sequence is invalid. �
Index sequences and morphologies of Darboux cyclides for other Segre characteristics can be similarly analyzed. Readers 

are referred to the technical report for detailed proofs. Table 5–7 show all the enumeration results: the first column is the 
Segre characteristic with the subscript indicating the number of real roots, not counting multiplicities; the second column is 
all the valid index sequences under each Segre characteristic; the third column gives an example of a pair of quadrics (one 
of which is an affine sphere in R4) in the quadric pencil in PR4; and the fourth and fifth columns show the morphology 
and equation of the Darboux cyclide computed from the stereographic projection of the QSIs. Here, a solid dot indicates a 
real acnode. Note that in Table 5–7, we have excluded the degenerate Darboux cyclides, however, all such exclusions will be 
addressed in the appendix.

Note that there can be more than one appearance for a derived Darboux cyclide, depending on the coefficient sign of the 
quartic term. For example, for the index sequence 〈1|2��+2|3|4〉, one derived equation of the Darboux cyclide (see details in 
the appendix) is

D = (λ1 − λ2 + 1

2
)X2 − 2(λ1 + λ2 − x + 1

2
)X + 4(λ2x2 + λ3 y2 + λ4z2) + 2x2 + 2x + λ1 − λ2 + 1

2
= 0, (10)

where X = x2 + y2 + z2 and λ1 < λ2 < λ3 < λ4 are the four real roots of the characteristic polynomial f (λ) = 0. If λ1 −
λ2 + 1

2 < 0, the morphology of this Darboux cyclide is Case 6.1, shown in Table 5; if λ1 − λ2 + 1
2 > 0, the morphology 

is Case 6.1∗ , also shown in Table 5; if λ1 − λ2 + 1
2 = 0 the cyclide degenerates to a cubic surface with a singular point, 

which is beyond our investigation scope. The cause of this phenomenon is from different relative positions of the projection 
center with respect to the QSI in R4. In geometry, these two morphologies are essentially the same. Nevertheless, we still 
distinguish them to provide better understanding of 3D shapes of Darboux cyclides.

4.2.1. Dupin cyclides
We further address which Darboux cyclides in Table 5–7 are Dupin cyclides. In Table 5–7, we add an upper right subscript 

in the fourth column Illustration to indicate whether the Darboux cyclide is a Dupin cyclide. ‘H, R, S’ refer to horn Dupin 
cyclides, ring Dupin cyclides and spindle Dupin cyclides, respectively. We add ‘Dupin’ to distinguish them from the general 
Darboux cyclides.
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The implicit equation of a Dupin cyclide is

(x2 + y2 + z2 + b2 − d2)2 − 4(ax − cd)2 − 4b2 y2 = 0,

where a > b > 0, d ≥ 0, and c2 = a2 − b2. The value of parameter d classifies Dupin cyclides into horn cyclides, ring cyclides 
and spindle cyclides. Without loss of generality, we let a = 5, b = 4 and c = 3.

(1) d = 0, which corresponds to a symmetric horn cyclide. An example is

(x2 + y2 + z2 + 16)2 − 100x2 − 64y2.

By the inverse stereographic projection, i.e., Equation (3), we get

100x2
1 + 64x2

2 − 225x2
4 + 510x4 − 289 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is 〈1||3||3|4〉, which is 
Case 15.1 in Table 6, denoted by superscript H.

(2) 0 < d < c, which corresponds to a non-symmetric horn cyclide. By setting d = 1, an example is

(x2 + y2 + z2 + 15)2 − 4(5x − 3)2 − 64y2 = 0.

By the inverse stereographic projection, we get

25x2
1 + 16x2

2 − 40x2
4 + 30x1x4 − 30x1 + 94x4 − 55 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is 〈1||3||3|4〉, which is 
Case 15.1 in Table 6, denoted by superscript H.

(3) d = c, which corresponds to a horn cyclide, whose morphology is different from the first two cases. An example is

(x2 + y2 + z2 + 7)2 − 4(5x − 9)2 − 64y2 = 0.

By the inverse stereographic projection, we get

25x2
1 + 16x2

2 + 72x2
4 + 90x1x4 − 90x1 − 138x4 + 65 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is 
〈
1||3��+|4〉

, which is 
Case 21.1 in Table 7, denoted by superscript H.

(4) c < d, which corresponds to a ring cyclide. By setting d = 4, an example is

(x2 + y2 + z2)2 − 4(5x − 12)2 − 64y2 = 0.

By the inverse stereographic projection, we get

100x2
1 + 64x2

2 + 575x2
4 + 480x1x4 − 480x1 − 1154x4 + 575 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is 〈1||3|2||4〉, which is 
Case 14 in Table 6, denoted by superscript R.

(5) d = a, which corresponds to a ring cyclide, whose morphology is distinct to Case 14. An example is

(x2 + y2 + z2 − 9)2 − 4(5x − 15)2 − 64y2 = 0.

By the inverse stereographic projection, we get

25x2
1 + 16x2

2 + 200x2
4 + 150x1x4 − 150x1 − 410x4 + 209 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is 
〈
1||3��+|4〉

, which is 
Case 21.2 in Table 7, denoted by superscript R.

(6) a < d, which corresponds to a spindle cyclide. By setting d = 8, an example is

(x2 + y2 + z2 − 48)2 − 4(5x − 24)2 − 64y2 = 0.

By the inverse stereographic projection, we get

100x2
1 + 960x1x4 + 64x2

2 − 97x2
4 − 960x1 − 2x4 + 95 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is 〈1||3||3|4〉, which is 
Case 15.2 in Table 6, denoted by superscript S.
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Table 3
Classifications of non-equivalent morphologies of Darboux cyclides. The second 
and fifth columns show the case IDs from the upper-left corner of the fourth 
column in Table 5–7. The third and sixth columns show the corresponding in-
dex sequence for each case.

Morpi ID j Index sequence

M1 ID1.1 〈1|2|1|2|3|4〉
ID8.2 〈1||3|4|3|4〉

M2 ID1.2 〈1|2|1|2|3|4〉
ID8.1 〈1||3|4|3|4〉

M3 ID2 〈1|2|3|2|3|4〉
ID7 〈1||3|2|3|4〉
ID14 〈1||3|2||4〉

M4 ID3 〈1|2|3|4〉
ID10 〈1||3|4〉

M5 ID4.1
〈
1��−1|2|3|4〉

ID11.1
〈
1��−1|2||4〉

M6 ID4.2
〈
1��−1|2|3|4〉

ID11.2
〈
1��−1|2||4〉

M7 ID5.1
〈
1|2��−2|3|4〉

ID12.1
〈
1|2��−2||4〉

ID18.1
〈
1��−|2|3|4〉

ID21.2
〈
1||3��+|4〉

M8 ID5.2
〈
1|2��−2|3|4〉

ID12.2
〈
1|2��−2||4〉

Morpi ID j Index sequence

M8 ID18.2
〈
1��−|2|3|4〉

ID21.1
〈
1||3��+|4〉

ID17
〈
1|2� � �+3|4〉

M9 ID6.1
〈
1|2��+2|3|4〉

ID13.1
〈
1|2��+2||4〉

ID19.1
〈
1|2��+|3|4〉

M10 ID6.1∗
〈
1|2��+2|3|4〉

ID13.1∗
〈
1|2��+2||4〉

ID19.1∗
〈
1|2��+|3|4〉

M11 ID9.1 〈1|2||2|3|4〉
ID15.2 〈1||3||3|4〉

M12 ID9.2 〈1|2||2|3|4〉
ID15.1 〈1||3||3|4〉

M13 ID16.1 〈1 � � �+ 2|3|4〉
ID20.1 〈1 � � �+ 2||4〉
ID22.1 〈1 � � �+ |3|4〉

M14 ID16.2 〈1 � � �+ 2|3|4〉
ID20.2 〈1 � � �+ 2||4〉
ID22.2 〈1 � � �+ |3|4〉

Table 4
Descriptions of the topology, singularity (numbers and types), and separability of the 14 non-equivalent morphologies in Table 3.

Morphology Illustration Singularity Separability Morphology Illustration Singularity Separability

Num Type Num Type

M1 0 � N M8 1 crunode N

M2 0 � Y M9 1 crunode N

M3 0 � N M10 1 crunode Y

M4 0 � N M11 2 crunode N

M5 1 acnode N M12 2 crunode Y

M6 1 acnode Y M13 1 cusp N

M7 1 crunode N M14 1 cusp N

4.3. Morphology classification of Darboux cyclides

The previous enumeration is based on the algebraic equivalence of index sequences and Segre characteristics of a sphere 
and a quadric in PR4. It is still possible that some of these enumerated index sequences in Table 5–7 correspond to an 
equivalent morphology under our classification rules in Section 3. For instance, Case 1.1 and Case 8.2 in Table 5 have the 
equivalent morphology, which is topologically two spheres, with one inside the other, no singularities, denoted by M1 in 
Table 3. Table 3 shows our final classification result with a total number of 14 non-equivalent morphologies. The third 
column of Table 3 shows the index sequences from Table 5–7 that give the corresponding morphologies. Table 4 provides 
every detail on the topology, singularity numbers and types as well as separability of the 14 non-equivalent morphologies 
in Table 3.
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Table 5
Enumeration of the morphologies of Darboux cyclides.

5. Conclusion

We provide an enumeration of all possible morphologies of Darboux cyclides based on the result by Coolidge (1916)
that every Darboux cyclide is the stereographic projection of the intersection (QSI) of a quadric and a sphere in R4. We 
first enumerate all valid QSIs in PR4 by two algebraic sequences: Segre characteristics and index sequences of the quadric 
pencil, which is a generalization of Tu et al. (2009) from PR3 to PR4. Then we go through every valid affine realization of 
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Table 6
Enumeration of the morphologies of Darboux cyclides.

the QSI from PR4 to R4, and use stereographic projection to achieve a full enumeration of the morphologies of Darboux 
cyclides. We have also pointed out which of the enumerated morphologies are essentially Dupin cyclides.
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Table 7
Enumeration of the morphologies of Darboux cyclides.
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